精英家教网 > 高中数学 > 题目详情
19.若f(x)=ax在[1,2]上的最大值与最小值的差为12,则实数a=4.

分析 利用指数函数的单调性的性质,建立方程即可求解a的值.

解答 解:①若a>1,则指数函数f(x)=ax在[1,2]上单调递增,
则f(2)-f(1)=12,
即a2-a=12,
∴a=4,或a=-3,(舍去).
②若0<a<1,则指数函数f(x)=ax在[1,2]上单调递减,
则f(1)-f(2)=2,
即a-a2=12,
此时方程无解,
综上所述,a=4
故答案为:4

点评 本题主要考查指数函数的应用,利用指数函数的单调性的性质是解决本题的关键,要注意对a进行分类讨论.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.扇形AOB,半径为2cm,|AB|=2$\sqrt{2}$cm,则$\widehat{AB}$所对的圆心角弧度数为90°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知方程$\frac{{x}^{2}}{5m-6}$+$\frac{{y}^{2}}{m+2}$=1.求m的取值范围:
(1)表示焦点在x轴上的椭圆:
(2)表示焦点在y轴上的椭圆.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.解下列不等式:
(1)-2x>1;
(2)x-3x<4x+1;
(3)$\frac{1}{3}$x-$\frac{1}{2}$x<3(x-$\frac{1}{6}$x);
(4)x+$\frac{1}{3}x$>$\frac{2}{3}$x-2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.函数y=$\sqrt{3x-1}$的定义域是{x|x$≥\frac{1}{3}$}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.0与{0}之间的正确关系是(  )
A.0⊆{0}B.0∈{0}C.0={0}D.0∉{0}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知集合A={x|x2+ax-6=0},B={x|x2+bx+c=0},且A≠B,A∪B={-2,3},A∩B={-2},求a,b,c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.过点P(-2,-1)作圆C:(x-4)2+(y-2)2=9的两条切线,切点分别为A,B,
(1)求直线AB的方程;
(2)求在经过点A,B的所有圆中,面积最小的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知向量$\overrightarrow a,\overrightarrow b$,且|${\overrightarrow b}$|=2,$\overrightarrow a•\overrightarrow b=2$,则|${t\overrightarrow b+(1-2t)\overrightarrow a}$|(t∈R)的最小值为1.

查看答案和解析>>

同步练习册答案