【题目】在四棱锥中,底面是正方形,底面,,、、分别是棱、、的中点,对于平面截四棱锥所得的截面多边形,有以下三个结论:
①截面的面积等于;
②截面是一个五边形;
③截面只与四棱锥四条侧棱中的三条相交.
其中,所有正确结论的序号是______.
【答案】②③
【解析】
取的中点,的四等分点,顺次连接、、、、,则平面即为过、、的平面截四棱锥所得截面,计算出截面面积,根据截面形状可判断命题①②③的正误.
取的中点,的四等分点,顺次连接、、、、,
则平面即为过、、的平面截四棱锥所得截面,如下图所示:
在四棱锥中,底面是正方形,底面,,
、分别为、的中点,且,
平面,平面,平面,
平面,平面平面,,
为的中点,为的中点,,
同理可得,且,
平面,平面,,
四边形为正方形,则,
,平面,平面,,
则,所以,四边形为矩形,其面积为,
设,,则为的中点,为的中点,
,,
平面,平面,平面平面,,且,
的边上的高为,
的面积为.
所以,截面面积为,命题①错误;
该截面是一个五边形,命题②正确;
由图可知,截面与四棱锥侧棱、、相交,命题③正确.
故答案为:②③.
科目:高中数学 来源: 题型:
【题目】近些年随着我国国民消费水平的升级,汽车产品已经逐渐进入千家万户,但是我国的城市发展水平并不能与汽车保有量增速形成平衡,城市交通问题越发突出,因此各大城市相继出现了购车限号上牌的政策.某城市采用摇号买车的限号上牌方式,申请人提供申请,经审查合格后,确认申请编码为有效编码,这时候就可以凭借申请编码参加每月一次的摇号.假设该城市有20万人参加摇号,每个月有2万个名额,每个月摇上的人退出摇号,没有摇上的人继续下个月摇号.
(1)平均每个人摇上号需要多长时间?
(2)如果每个月都有2万人补充进摇号队伍,以每个人进入摇号的月份算第一个月,他摇到号的月份设为随机变量.
①证明:为等比数列;
②假设该项政策连续实施36个月,小王是第一个月就参加摇号的人,记小王参.加摇号的次数为,试求的数学期望(精确到0.01).
参考数据:,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若无穷数列满足:只要,必有,则称具有性质.
(1)若具有性质,且,求;
(2)若无穷数列是等差数列,无穷数列是等比数列,,,.判断是否具有性质,并说明理由;
(3)设是无穷数列,已知.求证:“对任意都具有性质”的充要条件为“是常数列”.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了调查某款电视机的寿命,研究人员对该款电视机进行了相应的测试,将得到的数据分组:,,,,,并统计如图所示:
并对不同性别的市民对这款电视机的购买意愿作出调查,得到的数据如下表所示:
愿意购买该款电视机 | 不愿意购买该款电视机 | 总计 | |
男性 | 800 | 1000 | |
女性 | 600 | ||
总计 | 1200 |
(1)根据图中的数据,试估计该款电视机的平均寿命;
(2)根据表中数据,能否在犯错误的概率不超过0.001的前提下认为“是否愿意购买该款电视机”与“市民的性别”有关;
(3)以频率估计概率,若在该款电视机的生产线上随机抽取4台,记其中寿命不低于4年的电视机的台数为X,求X的分布列及数学期望.
参考公式及数据:,其中.
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图1,平面四边形中,为上一点,和均为等边三角形, 分别是和的中点,将四边形沿向上翻折至四边形的位置,使二面角为直二面角,如图2所示.
(1)求证:平面;
(2)求平面与平面所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知某校6个学生的数学和物理成绩如下表:
学生的编号 | 1 | 2 | 3 | 4 | 5 | 6 |
数学 | 89 | 87 | 79 | 81 | 78 | 90 |
物理 | 79 | 75 | 77 | 73 | 72 | 74 |
(1)若在本次考试中,规定数学在80分以上(包括80分)且物理在75分以上(包括75分)的学生为理科小能手.从这6个学生中抽出2个学生,设表示理科小能手的人数,求的分布列和数学期望;
(2)通过大量事实证明发现,一个学生的数学成绩和物理成绩具有很强的线性相关关系,在上述表格是正确的前提下,用表示数学成绩,用表示物理成绩,求与的回归方程.
参考数据和公式:,其中,.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com