精英家教网 > 高中数学 > 题目详情

已知锐角△ABC的三内角A、B、C所对应的三边分别为a、b、c,两向量数学公式数学公式满足数学公式
(Ⅰ)求角B的大小;
(Ⅱ)求函数数学公式的最大值以及此时角A的大小.

解:(Ⅰ)∵,且
∴(a2+c2-b2)tanB-ac=0,即•tanB=
又cosB=,tanB=
∴sinB=
∵B为锐角,∴B=;…(6分)
(Ⅱ)∵B=,∴A+C=,即C=-A,
则y=2sin2A+cos=2sin2A+cos(-2A)
=1-cos2A+cos2A+sin2A=sin2A-cos2A+1=sin(2A-)+1,…(9分)

∴当时,即时,函数的最大值为2.…(12分)
分析:(Ⅰ)根据两向量的坐标,由两向量垂直时数量积为0列出关系式,变形后利用余弦定理及同角三角函数间的基本关系化简,可得出sinB的值,由三角形为锐角三角形可得出B为锐角,利用特殊角的三角函数值即可求出B的度数;
(Ⅱ)由B的度数,得到A+C的度数,用A表示出C,代入所求的式子中,第一项利用二倍角的余弦函数公式化简,第二项利用两角和与差的余弦函数公式化简,合并整理后,再利用两角和与差的正弦函数公式化为一个角的正弦函数,由A的范围,求出这个角的范围,根据正弦函数的图象与性质可得出正弦函数的值域,进而确定出函数的最大值,以及此时A的度数.
点评:此题考查了平面向量的数量积运算,余弦定理,同角三角函数间的基本关系,两角和与差的正弦、余弦函数公式,二倍角的正弦函数公式,正弦函数的定义域与值域,以及特殊角的三角函数值,熟练掌握定理及公式是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知锐角△ABC的三内角A、B、C的对边分别是a,b,c,且(b2+c2-a2)tanA=
3
bc

(1)求角A的大小;
(2)求sin(A+10°)•[1-
3
tan(A-10°)]
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知锐角△ABC的三个内角A,B,C所对的边分别为a,b,c,且满足(a2+c2-b2)tanB=
3
ac,则角B为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2sin(ωx-
π
6
),(A>0,ω>0,x∈R)
,且f(x)的最小正周期是2π.
(1)求ω及f(0)的值;
(2)已知锐角△ABC的三个内角分别为A、B、C,若f(A+
3
)=
8
5
f(B+
6
)=-
30
17
,求sinC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•东莞一模)向量
a
=(
1
2
1
2
sinx+
3
2
cosx)
b
=(1,y)
,已知
a
b
,且有函数y=f(x).
(1)求函数y=f(x)的周期;
(2)已知锐角△ABC的三个内角分别为A,B,C,若有f(A-
π
3
)=
3
,边BC=
7
sinB=
21
7
,求AC的长及△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•崇明县二模)已知向量
a
=(sinx,cosx),
b
=(1,
3
),设函数f(x)=
a
b

(1)若x∈[0,π],求函数f(x)的单调区间;
(2)已知锐角△ABC的三内角A、B、C所对的边是a、b、c,若有f(A-
π
3
)=
3
,a=
7
,sinB=
21
7
,求c边的长度.

查看答案和解析>>

同步练习册答案