精英家教网 > 高中数学 > 题目详情
已知双曲线C:
x2
a2
-
y2
b2
=1(a>0,b>0)
的一个焦点是F2(2,0),且b=
3
a

(1)求双曲线C的方程;
(2)设经过焦点F2的直线l的一个法向量为(m,1),当直线l与双曲线C的右支相交于A,B不同的两点时,求实数m的取值范围;并证明AB中点M在曲线3(x-1)2-y2=3上.
(3)设(2)中直线l与双曲线C的右支相交于A,B两点,问是否存在实数m,使得∠AOB为锐角?若存在,请求出m的范围;若不存在,请说明理由.
分析:(1)根据半焦距c和a与b的关系联立方程求得a和b,则双曲线方程可得.
(2)把直线l与双曲线方程联立消去y,根据判别式大于0判断出直线与双曲线定有交点,进而根据韦达定理求得焦点横坐标的和与积得表达式,根据双曲线的性质求得m的范围.设A,B的坐标,则可知其中点的坐标,代入曲线3(x-1)2-y2=3等式成立,可判断出AB的中点在此曲线上.
(3)设存在实数m,使∠AOB为锐角,根据
OA
OB
>0
判断出x1x2+y1y2>0,根据(2)中求得x1x2的表达式,进而可去知y1y2的表达式,进而求得根据x1x2+y1y2>0求得m的范围,结果与m2>3矛盾,假设不成立,判断出这样的实数不存在.
解答:解:(1)c=2c2=a2+b2
∴4=a2+3a2∴a2=1,b2=3,∴双曲线为x2-
y2
3
=1

(2)l:m(x-2)+y=0由
y=-mx+2m
x2-
y2
3
=1
得(3-m2)x2+4m2x-4m2-3=0
由△>0得4m4+(3-m2)(4m2+3)>012m2+9-3m2>0即m2+1>0恒成立
x1+x2>0
x1x2>0
4m2
m2-3
>0

4m2+3
m2-3
>0

∴m2>3∴m∈(-∞,-
3
)∪(
3
,+∞)

设A(x1,y1),B(x2,y2),则
x1+x2
2
=
2m2
m2-3
y1+y2
2
=-
2m3
m2-3
+2m=
-6m
m2-3

AB中点M(
2m2
m2-3
,-
6m
m2-3
)

3(
2m2
m2-3
-1)2-
36m2
(m2-3)2
=3×
(m2+3)2
(m2-3)2
-
36m2
(m2-3)2
=3•
m4+6m2+9-12m2
(m2-3)2
=3

∴M在曲线3(x-1)2-y2=3上.

(3)A(x1,y1),B(x2,y2),设存在实数m,使∠AOB为锐角,
OA
OB
>0

∴x1x2+y1y2>0
因为y1y2=(-mx1+2m)(-mx2+2m)=m2x1x2-2m2(x1+x2)+4m2
∴(1+m2)x1x2-2m2(x1+x2)+4m2>0
∴(1+m2)(4m2+3)-8m4+4m2(m2-3)>0即7m2+3-12m2>0
m2
3
5
,与m2>3矛盾
∴不存在
点评:本题主要考查了双曲线的应用,考查了学生综合分析问题和基本的运算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•许昌三模)已知双曲线c:
x2
a
-
y2
b
=1(a>.,b>0)的半焦距为c,过左焦点且斜率为1的直线与双曲线C的左、右支各有一个交点,若抛物线y2=4cx的准线被双曲线截得的线段长大于
2
2
3
be2.(e为双曲线c的离心率),则e的取值范同是
2
3
2
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•宁波模拟)已知双曲线
x2
a
-
y2
a2+a+1
=1
的离心率的范围是数集M,设p:“k∈M”; q:“函数f(x)=
lg
x-1
x-2
  x<1
2x-k       x≥1
的值域为R”.则P是Q成立的(  )

查看答案和解析>>

科目:高中数学 来源:宁波模拟 题型:单选题

已知双曲线
x2
a
-
y2
a2+a+1
=1
的离心率的范围是数集M,设p:“k∈M”; q:“函数f(x)=
lg
x-1
x-2
  x<1
2x-k       x≥1
的值域为R”.则P是Q成立的(  )
A.充分而不必要条件B.必要而不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知双曲线c:
x2
a
-
y2
b
=1(a>.,b>0)的半焦距为c,过左焦点且斜率为1的直线与双曲线C的左、右支各有一个交点,若抛物线y2=4cx的准线被双曲线截得的线段长大于
2
2
3
be2.(e为双曲线c的离心率),则e的取值范同是______.

查看答案和解析>>

同步练习册答案