精英家教网 > 高中数学 > 题目详情
9.α是第四象限角,P($\sqrt{5}$,x)为其终边上一点,且sinα=$\frac{\sqrt{2}}{4}$x,则cosα的值为(  )
A.$\frac{\sqrt{10}}{4}$B.$\frac{\sqrt{6}}{4}$C.$\frac{\sqrt{2}}{4}$D.-$\frac{\sqrt{10}}{4}$

分析 由条件利用任意角的三角函数的定义,求得x的值,可得cosα=$\frac{x}{|OP|}$ 的值.

解答 解:∵α是第四象限角,P($\sqrt{5}$,x)为其终边上一点,且sinα=$\frac{\sqrt{2}}{4}$x=$\frac{x}{\sqrt{5{+x}^{2}}}$,
∴x=$\sqrt{3}$,|OP|=$\sqrt{8}$=2$\sqrt{2}$,
∴cosα=$\frac{x}{|OP|}$=$\frac{\sqrt{3}}{2\sqrt{2}}$=$\frac{\sqrt{6}}{4}$,
故选:B.

点评 本题主要考查任意角的三角函数的定义,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.执行下面的程序框图,则输出的m的值为(  )
A.2B.4C.5D.9

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.过点P(3,1)作直线l.
(Ⅰ)当直线l的倾斜角α为135°时,求直线l的方程;
(Ⅱ)当直线l在两坐标轴截距相等时,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.解关于x的不等式:ax2-2ax>x-2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知-9,a1,a2,-1成等差数列,-9,b1,b2,b3,-1成等比数列,则b2(a1+a2)等于(  )
A.30B.-30C.±30D.15

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.计算下列各式的值:
(1)($\frac{1}{16}$)${\;}^{-\frac{3}{4}}$-4•(-2)-3+($\frac{1}{4}$)0-9${\;}^{\frac{1}{2}}$;
(2)2log32-log3$\frac{32}{9}$+log38-2${\;}^{lo{g}_{2}3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.运行下面的程序,如果输入的n是6,那么输出的p是720   

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.某研究机构对高二学生的记忆力x和判断力y进行统计分析,得下表数据
x681012
y3467
(1)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$;
(2)试根据(1)求出的线性回归方程,预测记忆力为9的同学的判断力.
($\widehat{b}=\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}=\overline{y}-\widehat{b}\overline{x}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.如图平行四边形ABCD中,$\overrightarrow{AB}$=$\overrightarrow{b}$,$\overrightarrow{AD}$=$\overrightarrow{d}$,F是CD的三等分点,E是BC中点,M是AB中点,MC∩EF=N,若$\overrightarrow{MN}$=λ1$\overrightarrow{b}$+λ2$\overrightarrow{d}$,则λ12=(  )
A.$\frac{15}{14}$B.1C.$\frac{5}{14}$D.-$\frac{5}{14}$

查看答案和解析>>

同步练习册答案