精英家教网 > 高中数学 > 题目详情
7.2016年10月3日,诺贝尔生理学或医学奖揭晓,获奖者是日本生物学家大隅良典,他的获奖理由是“发
现了细胞自噬机制”.在上世纪90年代初期,他筛选了上千种不同的酵母细胞,找到了15种和自噬有关
的基因,他的研究令全世界的科研人员豁然开朗,在此之前,每年与自噬相关的论文非常少,之后呈现
了爆发式增长,下图是1994年到2016年所有关于细胞自噬具有国际影响力的540篇论文分布如下:

(Ⅰ)从这540篇论文中随机抽取一篇来研究,那么抽到2016年发表论文的概率是多少?
(Ⅱ)如果每年发表该领域有国际影响力的论文超过50篇,我们称这一年是该领域的论文“丰年”.若从1994年到2016年中随机抽取连续的两年来研究,那么连续的两年中至少有一年是“丰年”的概率是多少?
(Ⅲ)由图判断,从哪年开始连续三年论文数量方差最大?(结论不要求证明)

分析 (Ⅰ)设抽到2016年发表的论文为事件A,利用等可能事件概率计算公式能求出抽到2016年发表论文的概率.
(Ⅱ)设至少抽到一个“丰年”为事件B,利用列举法能求出至少一个“丰年”的概率.
(Ⅲ)81,48,57三个数方差最大,由此能求出结果.

解答 (共13分)
解:(Ⅰ)设抽到2016年发表的论文为事件A,依题意可知,
P(A)=$\frac{36}{540}$=$\frac{1}{15}$.…(5分)
(Ⅱ)设至少抽到一个“丰年”为事件B,依题意可知,
1994~2016的23年中随机抽取连续两年共有22种可能,
至少一个“丰年”的可能情况有:
2009~2010,2010~2011,2011~2012,2012~2013,2013~2014,2014~2015,2015~2016共计7种可能,
P(B)=$\frac{7}{22}$.…(11分)
(Ⅲ)81,48,57三个数方差最大,
所以从2013年开始,连续三年论文数方差最大.…(13分)

点评 本题考查概率与方差的求法,是基础题,解题时要认真审题,注意列举法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.已知函数f(x)=x2-2ax+b(x∈R),给出下列命题:
①存在实数ɑ,使f(x)为偶函数.
②若f(0)=f(2),则 f(x)的图象关于x=1对称.
③若a2-b≤0,则f(x)在区间[a,+∞)上是增函数
④若a2-b-2>0,则函数h(x)=f(x)-2有2个零点.
其中正确命题的序号为①②③.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设函数f(x)=$\frac{x}{1+|x|}$,则使得f(x2-2x)>f(3x-6)成立的x的取值范围是(  )
A.(-∞,2)∪(3,+∞)B.(2,3)C.(-∞,2)D.(3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设$\frac{i}{1+i}=x+yi$(x,y∈R,i为虚数单位),则模|x-yi|=(  )
A.1B.$\frac{1}{2}$C.$\sqrt{2}$D.$\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.下列命题中正确的是(  )
A.过三点确定一个平面B.四边形是平面图形
C.三条直线两两相交则确定一个平面D.两个相交平面把空间分成四个区域

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知{an}是等比数列,满足a1=3,a4=24,数列{an+bn}是首项为4,公差为1的等差数列.
(Ⅰ)求数列{an}和{bn}的通项公式;
(Ⅱ)求数列{bn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设命题p:直线x-y+1=0的倾斜角为135°;命题q:平面直角坐标系内的三点A(-1,-3),B(1,1),C(2,2)共线.则下列判断正确的是(  )
A.¬p为假B.¬p∧¬q为真C.p∨q为真D.q为真

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.为了了解800名高三学生是否喜欢背诵诗词,从中抽取一个容量为20的样本,若采用系统抽样,则分段的间隔k为(  )
A.50B.60C.30D.40

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数$f(x)=\left\{\begin{array}{l}x(x+4),x≥0\\ x(x-4),x<0\end{array}\right.$,则f[f(-1)]的值是(  )
A.40B.42C.44D.45

查看答案和解析>>

同步练习册答案