【题目】已知函数.
(1)求曲线在点处的切线方程和函数的极值:
(2)若对任意,都有成立,求实数的最小值.
【答案】(1)切线方程为,函数在时,取得极小值(2)1
【解析】
试题分析:(1)根据导数几何意义得曲线在处的切线斜率等于,再根据,利用点斜式可得切线方程为,求函数极值,首先求导函数零点:,列表分析导函数符号变化规律,确定函数极值(2)不等式恒成立问题一般转化为对应函数最值问题:,再根据函数定义域讨论函数最值取法:
若,;
若,
试题解析:(1)因为,所以,
因为,所以曲线在处的切线方程为..........3分
由解得,则及的变化情况如下:
2 | |||
0 | |||
递减 | 极小值 | 递增 |
所以函数在时,取得极小值....................6分
(2)由题设知:当时,,当时,,
若,令,则,
由于,显然不符合题设要求...9分
若,对,
由于,
显然,当,对,不等式恒成立,
综上可知,的最小值为1.........................................12分
科目:高中数学 来源: 题型:
【题目】4个男生,3个女生站成一排.(必须写出算式再算出结果才得分)
(Ⅰ)3个女生必须排在一起,有多少种不同的排法?
(Ⅱ)任何两个女生彼此不相邻,有多少种不同的排法?
(Ⅲ)甲乙二人之间恰好有三个人,有多少种不同的排法?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线的方程为,其中.
(1)求证:直线恒过定点;
(2)当变化时,求点到直线的距离的最大值;
(3)若直线分别与轴、轴的负半轴交于两点,求面积的最小值及此时直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校对高二年段的男生进行体检,现将高二男生的体重数据进行整理后分成6组,并绘制部分频率分布直方图(如图所示).已知第三组的人数为200.根据一般标准,高二男生体重超过属于偏胖,低于属于偏瘦.观察图形的信息,回答下列问题:
(1)求体重在内的频率,并补全频率分布直方图;
(2)用分层抽样的方法从偏胖的学生中抽取人对日常生活习惯及体育锻炼进行调查,则各组应分别抽取多少人?
(3)根据频率分布直方图,估计高二男生的体重的中位数与平均数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设是两条不同的直线, 是三个不同的平面,给出下列四个命题:
①若,则 ②若,则
③若,则 ④若,则
其中正确命题的序号是( )
A. ①和② B. ②和③ C. ③和④ D. ①和④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆,离心率为,两焦点分别为,过的直线交椭圆于两点,且的周长为8.
(1)求椭圆的方程;
(2)过点作圆的切线交椭圆于两点,求弦长的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系中,已知曲线,以平面直角坐标系的原点为极点,轴的正半轴为极轴,取相同的单位长度建立极坐标系,已知直线.
(1)将曲线上的所有点的横坐标、纵坐标分别伸长为原来的倍后得到曲线.试写出直线的直角坐标方程和曲线的参数方程:
(2)在曲线上求一点,使点到直线的距离最大,并求出此最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司做了用户对其产品满意度的问卷调查,随机抽取了20名用户的评分,得到图3所示茎叶图,对不低于75的评分,认为用户对产品满意,否则,认为不满意,
(Ⅰ)根据以上资料完成下面的2×2列联表,若据此数据算得,则在犯错的概率不超过5%的前提下,你是否认为“满意与否”与“性别”有关?
附:
(Ⅱ) 估计用户对该公司的产品“满意”的概率;
(Ⅲ) 该公司为对客户做进一步的调查,从上述对其产品满意的用户中再随机选取2人,求这两人都是男用户或都是女用户的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com