精英家教网 > 高中数学 > 题目详情

【题目】求下列方程组的解集:

1;(2;(3;(4.

【答案】1;(2;(3;(4.

【解析】

1)利用加减消元法可求出原方程组的解集;

2)利用完全平方公式求出的值,然后联立方程组,可求出原方程组的解集;

3)将两式相减可得出,可得,代入,利用代入消元法可求出原方程组的解集;

4)由可得,由此可得出两个方程组,利用代入消元法解出这两个方程组,解出即得原方程组的解集.

1

②得,即,解得.

②得,即,解得.

因此,原方程组的解集为

2

,得,即,所以

,得,即,所以.

所以

解得

因此,原方程组的解集为

3

②得,即,可得,③,

将③代入①得,整理得,解得.

时,;当时,.

因此,原方程组的解集为

4

由②得,所以

所以原方程组化为.

先解方程组,由,代入,解得.

时,;当时,

然后解方程组,由,得,代入,解得.

时,;当时,.

因此,原方程组的解集为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】个相同的小球放到三个编号为的盒子中,且每个盒子内的小球数要多于盒子的编号数,则共有多少种放法( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中中,曲线的参数方程为为参数, ). 以坐标原点为极点, 轴正半轴为极轴建立极坐标系,已知直线的极坐标方程为.

(1)设是曲线上的一个动点,当时,求点到直线的距离的最大值;

(2)若曲线上所有的点均在直线的右下方,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2016·贵阳第二次联考)在△ABC中,角ABC的对边分别为abc,向量m=(ab,sin A-sin C),向量n=(c,sin A-sin B),且mn.

(1)求角B的大小;

(2)设BC的中点为D,且AD,求a+2c的最大值及此时△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某面包店随机收集了面包种类的有关数据,经分类整理得到下表:

面包类型

第一类

第二类

第三类

第四类

第五类

第六类

面包个数

90

60

30

80

100

40

好评率

0.6

0.45

0.7

0.35

0.6

0.5

好评率是指:一类面包中获得好评的个数与该类面包的个数的比值.

1)从面包店收集的面包中随机选取1个,求这个面包是获得好评的第五类面包的概率;

2)从面包店收集的面包中随机选取1个,估计这个面包没有获得好评的概率;

3)面包店为增加利润,拟改变生产策略,这将导致不同类型面包的好评率发生变化.假设表格中只有两类面包的好评率数据发生变化,那么哪类面包的好评率增加0.1,哪类面包的好评率减少0.1,使得获得好评的面包总数与样本中的面包总数的比值达到最大?(只需写出结论)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在矩形中,为线段的中点,如图1,沿折起至,使,如图2所示.

(1)求证:平面平面

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中,角所对的边分别为,且

(1)求的值;

(2)若,求的面积的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的两个焦点是 ,且椭圆经过点.

(1)求椭圆的标准方程;

(2)若过左焦点且倾斜角为45°的直线与椭圆交于两点,求线段的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图ABC内接于圆柱的底面圆OAB是圆O的直径AB2BC1DCEB是两条母线tanEAB.

(1)求三棱锥CABE的体积;

(2)证明:平面ACD⊥平面ADE

(3)CD上是否存在一点M使得MO∥平面ADE证明你的结论.

查看答案和解析>>

同步练习册答案