精英家教网 > 高中数学 > 题目详情

【题目】在极坐标系中,曲线C的方程为 ,点 ,以极点为原点,极轴为x轴的正半轴,建立平面直角坐标系,两坐标系中取相同的长度单位.
(1)求曲线C的直角坐标方程及点R的直角坐标;
(2)设P为曲线C上一动点,以PR为对角线的矩形PQRS的一边垂直于极轴,求矩形PQRS周长的最小值及此时点P的直角坐标.

【答案】
(1)

解:由x=ρcosθ,y=ρsinθ,

∴曲线C的直角坐标方程为 ,点R的直角坐标为(2,2)


(2)

解:曲线C的参数方程为 为参数,α∈[0,2π)),

,如图,依题意可得:

|PQ|=2﹣cosα,

∴矩形周长=

∴当 时,周长的最小值为4,此时,点P的坐标为


【解析】(1)由极坐标转化为直角坐标即可;(2)由参数方程,设出P的坐标,得到矩形的周长,根据三角函数的图象和性质即可求出最值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知:已知函数

Ⅰ)若曲线y=f(x)在点P(2,f(2))处的切线的斜率为﹣6,求实数a;

Ⅱ)若a=1,求f(x)的极值;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某射手射击1次,击中目标的概率是0.9,他连续射击4次,且他各次射击是否击中目标相互之间没有影响.有下列结论:

①他第3次击中目标的概率是0.9; ②他恰好击中目标3次的概率是0.93×0.1;

③他至少击中目标1次的概率是1-0.14 ④他恰好有连续2次击中目标的概率为3×0.93×0.1

其中正确结论的序号是______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设抛物线C:y2=2px(p>0)的焦点为F,点M在C上,|MF|=5,若以MF为直径的圆过点(0,2),则C的方程为(
A.y2=4x或y2=8x
B.y2=2x或y2=8x
C.y2=4x或y2=16x
D.y2=2x或y2=16x

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,直三棱柱ABC-A1B1C1中,D,E分别是ABBB1的中点.

)证明: BC1//平面A1CD;

)设AA1= AC=CB=2AB=2,求三棱锥CA1DE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=xlnx﹣ax,g(x)=﹣x2﹣2.
(1)对一切x∈(0,+∞),f(x)≥g(x)恒成立,求实数a的取值范围;
(2)当a=﹣1时,求函数f(x)在区间[m,m+3](m>0)上的最值;
(3)证明:对一切x∈(0,+∞),都有 成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某高校在2012年的自主招生考试成绩中随机抽取名中学生的笔试成绩,按成绩分组,得到的频率分布表如表所示.

组号

分组

频数

频率

第1组

5

第2组

第3组

30

第4组

20

第5组

10

(1)请先求出频率分布表中位置的相应数据,再完成频率分布直方图;

(2)为了能选拔出最优秀的学生,高校决定在笔试成绩高的第组中用分层抽样抽取名学生进入第二轮面试,求第3、4、5组每组各抽取多少名学生进入第二轮面试;

(3)在(2)的前提下,学校决定在名学生中随机抽取名学生接受考官进行面试,求:第组至少有一名学生被考官面试的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在等腰梯形ABCD中, ,E,F分别是底边AB,CD的中点,把四边形BEFC沿直线EF折起,使得面BEFC⊥面ADFE,若动点P∈平面ADFE,设PB,PC与平面ADFE所成的角分别为θ1 , θ2(θ1 , θ2均不为0).若θ12 , 则动点P的轨迹为(

A.直线
B.椭圆
C.圆
D.抛物线

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,BC= ,∠A=60°.
(1)若cosB= ,求AC的长;
(2)若AB=2,求△ABC的面积.

查看答案和解析>>

同步练习册答案