精英家教网 > 高中数学 > 题目详情

【题目】数列{an}满足an+1=an(1﹣an+1),a1=1,数列{bn}满足:bn=anan+1 , 则数列{bn}的前10项和S10=

【答案】
【解析】解:由an+1=an(1﹣an+1)得: =1,所以得到数列{ }是以1为首项,1为公差的等差数列,
=1+(n﹣1)=n,所以an=
而bn=anan+1= = ,则s10=b1+b2+…+b10=1﹣ + +…+ =1﹣ =
所以答案是
【考点精析】掌握数列的前n项和和数列的通项公式是解答本题的根本,需要知道数列{an}的前n项和sn与通项an的关系;如果数列an的第n项与n之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】三角形ABC中,内角A,B,C所对边a,b,c成公比小于1的等比数列,且sinB+sin(A﹣C)=2sin2C.
(1)求内角B的余弦值;
(2)若b= ,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校从参加高三模拟考试的学生中随机抽取60名学生,将其数学成绩(均为整数)分成六组[90,100),[100,110),…,[140,150]后得到如下部分频率分布直方图,观察图形的信息,回答下列问题:

(1)求分数在[120,130)内的频率;

(2)估计本次考试的中位数;

(3)用分层抽样的方法在分数段为[110,130)的学生中抽取一个容量为6的样本,将该样本看成一个总体,从中任取2人,求至多有1人在分数段[120,130)内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】袋中装有5个大小相同的球,其中有2个白球,2个黑球,1个红球,现从袋中每次取出1球,去除后不放回,直到取到有两种不同颜色的球时即终止,用表示终止取球时所需的取球次数,则随机变量的数字期望是(

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,是正方形所在平面外一点,在面上的正投影,

.有以下四个命题:

(1)⊥面;(2)

(3)以作为邻边的平行四边形面积是8;

(4)恰在上.

其中正确命题的个数为( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=3x+λ3x(λ∈R).
(1)若f(x)为奇函数,求λ的值和此时不等式f(x)>1的解集;
(2)若不等式f(x)≤6对x∈[0,2]恒成立,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆的两个焦点坐标分别为F1(-,0)F2(,0),且椭圆过点

(1)求椭圆方程;

(2)过点作不与y轴垂直的直线l交该椭圆于MN两点,A为椭圆的左顶点,证明

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在四棱锥中,底面为矩形,平面,点在线段上,平面.

(Ⅰ)证明:平面

(Ⅱ)若,求二面角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}满足a32,前3项和S3.

(1){an}的通项公式;

(2)设等比数列{bn}满足b1a1b4a15,求{bn}的前n项和Tn.

【答案】1an.2Tn2n1.

【解析】试题分析:(1)根据等差数列的基本量运算解出,代入公式算出等差数列的通项公式;(2)计算出等比数列的首项和公比,代入求和公式计算.

试题解析:

(1)设{an}的公差为d,由已知得

解得a1=1,d

故{an}的通项公式an=1+,即an.

(2)由(1)得b1=1,b4a15=8.

设{bn}的公比为q,则q3=8,从而q=2,

故{bn}的前n项和Tn=2n-1.

点睛:本题考查等差数列的基本量运算求通项公式以及等比数列的前n项和,属于基础题. 在数列求和中,最常见最基本的求和就是等差数列、等比数列中的求和,这时除了熟练掌握求和公式外还要熟记一些常见的求和结论,再就是分清数列的项数,比如题中给出的,以免在套用公式时出错.

型】解答
束】
20

【题目】设不等式mx2-2x-m+1<0对于满足|m|≤2的一切m的值都成立,求x的取值范围.

查看答案和解析>>

同步练习册答案