精英家教网 > 高中数学 > 题目详情
6.已知$0<α<\frac{π}{2},sinα=\frac{{2\sqrt{5}}}{5}$.
(1)求tanα的值;       
(2)求$\frac{{4sin({π-α})+2cos({2π-α})}}{{sin({\frac{π}{2}-α})+sin({-α})}}$的值.

分析 (1)利用同角三角函数的基本关系求得cosα的值,可得tanα的值.
(2)利用诱导公式、同角三角函数的基本关系,求得要求式子的值.

解答 解:(1)∵$0<α<\frac{π}{2},sinα=\frac{{2\sqrt{5}}}{5}$,∴cosα=$\sqrt{{1-sin}^{2}α}$=$\frac{\sqrt{5}}{5}$,∴tanα=$\frac{sinα}{cosα}$=2.
(2)$\frac{{4sin({π-α})+2cos({2π-α})}}{{sin({\frac{π}{2}-α})+sin({-α})}}$=$\frac{4sinα+2cosα}{cosα-sinα}$=$\frac{4tanα+2}{1-tanα}$=$\frac{8+2}{1-2}$=-10.

点评 本题主要考查同角三角函数的基本关系、诱导公式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.设集合A={x|1<x<2},B={x|x<a}满足A?B,则实数a的取值范围是(  )
A.[2,+∞)B.(-∞,1]C.[1,+∞)D.(-∞,2]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.从2013年1月1号开始,铁道部对火车票大面积降价,但降价幅度引发了争议.于是,某高校对此展开了一项调查,得到如下数据:
对此事的态度好评(有利于百姓出行)中评(影响不大)差评(纯属忽悠)不关心
人数2000400030001000
若从参与调查的人员中,按分层抽样的方法抽取50人进行座谈,则给出“差评”与“好评”的人数之差为(  )
A.10B.8C.5D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若△ABC的内角A,B,C所对的边分别为a,b,c,已知2bsin2A=3asinB,且c=2b,则$\frac{a}{b}$等于$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知等差数列{an}与等差数列{bn}的前n项和分别为Sn和Tn,若$\frac{S_n}{T_n}=\frac{3n-1}{2n+3}$,则$\frac{{{a_{10}}}}{{{b_{10}}}}$=(  )
A.$\frac{3}{2}$B.$\frac{14}{13}$C.$\frac{56}{41}$D.$\frac{29}{23}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知双曲线方程为$\frac{x^2}{m^2}+\frac{y^2}{{{m^2}-4}}$=1(m∈z),则双曲线的离心率是(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知f(x)=3sin(2x+$\frac{π}{4}$)-1.
(1)f(x)的图象是由y=sin x的图象如何变换而来?
(2)求f(x)的最小正周期、图象的对称轴方程、最大值及其对应的x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知复数z=$\frac{(1-i)^{2}+3(1+i)}{2-i}$
(1)若z•(m+2i)为纯虚数,求实数m的值;
(2)若复数z1与z在复平面上所对应的点关于虚轴对称,求z1的实部;
(3)若复数z2=a+bi(a,b∈R),且z2+az+b=1-i,求|z2|

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.当$x=\frac{π}{4}$时,函数f(x)=sin(ωx+φ)(A>0)取得最小值,则函数$y=f({\frac{3π}{4}-x})$是(  )
A.奇函数且图象关于点$({\frac{π}{2},0})$对称B.偶函数且图象关于点(π,0)对称
C.奇函数且图象关于直线$x=\frac{π}{2}$对称D.偶函数且图象关于点$({\frac{π}{2},0})$对称

查看答案和解析>>

同步练习册答案