精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,点,若在曲线上存在点使得,则实数的取值范围为__________

【答案】

【解析】

根据题意,设Pxy),分析可得若|PB|=2|PA|,则有(x﹣4)2+y2=4(x﹣1)2+4y2,变形可得x2+y2=4,进而可得P的轨迹为以O为圆心,半径为2的圆;将曲线C的方程变形为(xa2+(y﹣2a2=9,可得以(a,2a)为圆心,半径为3的圆;据此分析可得若曲线C上存在点P使得|PB|=2|PA|,则圆C与圆x2+y2=4有公共点,由圆与圆的位置关系可得3﹣22+3,解可得a的取值范围,即可得答案.

根据题意,设Pxy),

|PB|=2|PA|,即|PB|2=4|PA|2,则有(x﹣4)2+y2=4(x﹣1)2+4y2

变形可得:x2+y2=4,

P的轨迹为以O为圆心,半径为2的圆,

曲线Cx2﹣2ax+y2﹣4ay+5a2﹣9=0,即(xa2+(y﹣2a2=9,则曲线C是以(a,2a)为圆心,半径为3的圆;

若曲线C上存在点P使得|PB|=2|PA|,则圆C与圆x2+y2=4有公共点,

则有3﹣22+3,即1|a|≤5,

解可得:aa

a的取值范围为:[]∪[];

故答案为:[]∪[].

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的两个焦点与短轴的一个端点是等边三角形的三个顶点,且长轴长为4.

)求椭圆的方程;

)若是椭圆的左顶点,经过左焦点的直线与椭圆交于两点,求的面积之差的绝对值的最大值.为坐标原点)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,已知圆心在轴上的圆经过两点,直线的方程为.

1)求圆的方程;

2)当时,为直线上的定点,若圆上存在唯一一点满足,求定点的坐标;

3)设点AB为圆上任意两个不同的点,若以AB为直径的圆与直线都没有公共点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业生产甲、乙两种产品,销售利润分别为2千元/件、1千元/件.甲、乙两种产品都需要在两种设备上加工,生产一件甲产品需用设备2小时, 设备6小时;生产一件乙产品需用设备3小时, 设备1小时. 两种设备每月可使用时间数分别为480小时、960小时,若生产的产品都能及时售出,则该企业每月利润的最大值为( )

A. 320千元 B. 360千元 C. 400千元 D. 440千元

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列事件是随机事件的是(  )

x>10时,xRx2+x0有解

aR关于x的方程x2+a0在实数集内有解;sinα>sinβ时,α>β

A.①②B.②③C.③④D.①④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知.

(1)讨论的单调性;

(2)若恒成立,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在对人们的休闲方式的一次调查中,用简单随机抽样方法调查了125人,其中女性70人,男性55.女性中有40人主要的休闲方式是看电视,另外30人主要的休闲方式是运动;男性中有20人主要的休闲方式是看电视,另外35人主要的休闲方式是运动.

1)根据以上数据建立一个列联表;

2)能否在犯错误的概率不超过0.025的前提下,认为性别与休闲方式有关系?

3)在休闲方式为看电视的人中按分层抽样方法抽取6人参加某机构组织的健康讲座,讲座结束后再从这6人中抽取2人作反馈交流,求参加交流的恰好为2位女性的概率.

附:

P

0.05

0.025

0.010

k

3.841

5.024

6.635

休闲方式

性别

看电视

运动

合计

合计

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在某区“创文明城区”(简称“创城”)活动中,教委对本区四所高中学校按各校人数分层抽样,随机抽查了100人,将调查情况进行整理后制成下表:

学校

抽查人数

50

15

10

25

“创城”活动中参与的人数

40

10

9

15

(注:参与率是指:一所学校“创城”活动中参与的人数与被抽查人数的比值)假设每名高中学生是否参与”创城”活动是相互独立的.

(1)若该区共2000名高中学生,估计学校参与“创城”活动的人数;

(2)在随机抽查的100名高中学生中,随机抽取1名学生,求恰好该生没有参与“创城”活动的概率;

(3)在上表中从两校没有参与“创城”活动的同学中随机抽取2人,求恰好两校各有1人没有参与“创城”活动的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设正项数列的前项和为,且满足:

(Ⅰ)求数列的通项公式;

(Ⅱ)若正项等比数列满足,且,数列的前项和为,若对任意,均有恒成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案