【题目】在平面直角坐标系中,点,若在曲线上存在点使得,则实数的取值范围为__________
【答案】
【解析】
根据题意,设P(x,y),分析可得若|PB|=2|PA|,则有(x﹣4)2+y2=4(x﹣1)2+4y2,变形可得x2+y2=4,进而可得P的轨迹为以O为圆心,半径为2的圆;将曲线C的方程变形为(x﹣a)2+(y﹣2a)2=9,可得以(a,2a)为圆心,半径为3的圆;据此分析可得若曲线C上存在点P使得|PB|=2|PA|,则圆C与圆x2+y2=4有公共点,由圆与圆的位置关系可得3﹣22+3,解可得a的取值范围,即可得答案.
根据题意,设P(x,y),
若|PB|=2|PA|,即|PB|2=4|PA|2,则有(x﹣4)2+y2=4(x﹣1)2+4y2,
变形可得:x2+y2=4,
即P的轨迹为以O为圆心,半径为2的圆,
曲线Cx2﹣2ax+y2﹣4ay+5a2﹣9=0,即(x﹣a)2+(y﹣2a)2=9,则曲线C是以(a,2a)为圆心,半径为3的圆;
若曲线C上存在点P使得|PB|=2|PA|,则圆C与圆x2+y2=4有公共点,
则有3﹣22+3,即1|a|≤5,
解可得:a或a,
即a的取值范围为:[,]∪[,];
故答案为:[,]∪[,].
科目:高中数学 来源: 题型:
【题目】已知椭圆的两个焦点与短轴的一个端点是等边三角形的三个顶点,且长轴长为4.
(Ⅰ)求椭圆的方程;
(Ⅱ)若是椭圆的左顶点,经过左焦点的直线与椭圆交于, 两点,求与的面积之差的绝对值的最大值.(为坐标原点)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,已知圆心在轴上的圆经过两点和,直线的方程为.
(1)求圆的方程;
(2)当时,为直线上的定点,若圆上存在唯一一点满足,求定点的坐标;
(3)设点A,B为圆上任意两个不同的点,若以AB为直径的圆与直线都没有公共点,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某企业生产甲、乙两种产品,销售利润分别为2千元/件、1千元/件.甲、乙两种产品都需要在两种设备上加工,生产一件甲产品需用设备2小时, 设备6小时;生产一件乙产品需用设备3小时, 设备1小时. 两种设备每月可使用时间数分别为480小时、960小时,若生产的产品都能及时售出,则该企业每月利润的最大值为( )
A. 320千元 B. 360千元 C. 400千元 D. 440千元
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列事件是随机事件的是( )
①当x>10时,; ②当x∈R,x2+x=0有解
③当a∈R关于x的方程x2+a=0在实数集内有解; ④当sinα>sinβ时,α>β( )
A.①②B.②③C.③④D.①④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在对人们的休闲方式的一次调查中,用简单随机抽样方法调查了125人,其中女性70人,男性55人.女性中有40人主要的休闲方式是看电视,另外30人主要的休闲方式是运动;男性中有20人主要的休闲方式是看电视,另外35人主要的休闲方式是运动.
(1)根据以上数据建立一个列联表;
(2)能否在犯错误的概率不超过0.025的前提下,认为性别与休闲方式有关系?
(3)在休闲方式为看电视的人中按分层抽样方法抽取6人参加某机构组织的健康讲座,讲座结束后再从这6人中抽取2人作反馈交流,求参加交流的恰好为2位女性的概率.
附:
P( ) | 0.05 | 0.025 | 0.010 |
k | 3.841 | 5.024 | 6.635 |
休闲方式 性别 | 看电视 | 运动 | 合计 |
女 | |||
男 | |||
合计 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在某区“创文明城区”(简称“创城”)活动中,教委对本区四所高中学校按各校人数分层抽样,随机抽查了100人,将调查情况进行整理后制成下表:
学校 | ||||
抽查人数 | 50 | 15 | 10 | 25 |
“创城”活动中参与的人数 | 40 | 10 | 9 | 15 |
(注:参与率是指:一所学校“创城”活动中参与的人数与被抽查人数的比值)假设每名高中学生是否参与”创城”活动是相互独立的.
(1)若该区共2000名高中学生,估计学校参与“创城”活动的人数;
(2)在随机抽查的100名高中学生中,随机抽取1名学生,求恰好该生没有参与“创城”活动的概率;
(3)在上表中从两校没有参与“创城”活动的同学中随机抽取2人,求恰好两校各有1人没有参与“创城”活动的概率是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设正项数列的前项和为,且满足:,,.
(Ⅰ)求数列的通项公式;
(Ⅱ)若正项等比数列满足,,且,数列的前项和为,若对任意,均有恒成立,求实数的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com