精英家教网 > 高中数学 > 题目详情

已知O为平面直角坐标系的原点,过点M(-2,0)的直线l与圆x+y=1交于P、Q两点,且

(Ⅰ)求∠PDQ的大小;

(Ⅱ)求直线l的方程.

 

【答案】

(Ⅰ)∠POQ=120°.(Ⅱ) .

【解析】

试题分析:(Ⅰ)因为P、Q两点在圆x+y=1上,所以

因为

所以

所以∠POQ=120°.                   5分

(Ⅱ)依题意,直线l的斜率存在,

因为直线l过点M(-2,0),可设直线l:y=k(x+2).

由(Ⅰ)可知O到直线l的距离等于

所以

所以直线的方程为                         9分

考点:直线与圆的位置关系,直线方程,平面向量的数量积。

点评:中档题,中档题,曲线关系问题,往往通过联立方程组,得到一元二次方程,运用韦达定理。恰当的运用圆中的“特征三角形”,转化成点到直线的距离问题,更为简洁。

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【选做题】在A,B,C,D四小题中只能选做2题,每题10分,共计20分.请在答题卡指定区域内作答,解答时写出文字说明、证明过程或演算步骤.
21-1.(选修4-2:矩阵与变换)
设M是把坐标平面上的点的横坐标伸长到2倍,纵坐标伸长到3倍的伸压变换.
(1)求矩阵M的特征值及相应的特征向量;
(2)求逆矩阵M-1以及椭圆
x2
4
+
y2
9
=1在M-1的作用下的新曲线的方程.
21-2.(选修4-4:参数方程)
以直角坐标系的原点O为极点,x轴的正半轴为极轴.已知点P的直角坐标为(1,-5),点M的极坐标为(4,
π
2
),若直线l过点P,且倾斜角为 
π
3
,圆C以M为圆心、4为半径.
(1)求直线l关于t的参数方程和圆C的极坐标方程;
(2)试判定直线l和圆C的位置关系.

查看答案和解析>>

科目:高中数学 来源: 题型:

[选做题]在A、B、C、D四小题中只能选做2题,每小题10分,计20分.请把答案写在答题纸的指定区域内.
A.(选修4-1:几何证明选讲)
如图,圆O的直径AB=8,C为圆周上一点,BC=4,过C作圆的切线l,过A作直线l的垂线AD,D为垂足,AD与圆O交于点E,求线段AE的长.
B.(选修4-2:矩阵与变换)
已知二阶矩阵A有特征值λ1=3及其对应的一个特征向量α1=
1
1
,特征值λ2=-1及其对应的一个特征向量α2=
1
-1
,求矩阵A的逆矩阵A-1
C.(选修4-4:坐标系与参数方程)
以平面直角坐标系的原点O为极点,x轴的正半轴为极轴,建立极坐标系(两种坐标系中取相同的单位长度),已知点A的直角坐标为(-2,6),点B的极坐标为(4,
π
2
)
,直线l过点A且倾斜角为
π
4
,圆C以点B为圆心,4为半径,试求直线l的参数方程和圆C的极坐标方程.
D.(选修4-5:不等式选讲)
设a,b,c,d都是正数,且x=
a2+b2
y=
c2+d2
.求证:xy≥
(ac+bd)(ad+bc)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P是直角坐标平面xOy上的一个动点,|OP|=
2
(点O为坐标原点),点M(-1,0),则cos∠OPM的取值范围是
[
2
2
,1]
[
2
2
,1]

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•广州二模)已知点P是直角坐标平面xOy上的一个动点,|OP|=
2
(点O为坐标原点),点M(-1,0),则cos∠MOP的取值范围是
[-1,1]
[-1,1]

查看答案和解析>>

科目:高中数学 来源:2012-2013学年江苏省南通市海门中学高三(上)开学检测数学试卷(解析版) 题型:解答题

【选做题】在A,B,C,D四小题中只能选做2题,每题10分,共计20分.请在答题卡指定区域内作答,解答时写出文字说明、证明过程或演算步骤.
21-1.(选修4-2:矩阵与变换)
设M是把坐标平面上的点的横坐标伸长到2倍,纵坐标伸长到3倍的伸压变换.
(1)求矩阵M的特征值及相应的特征向量;
(2)求逆矩阵M-1以及椭圆+=1在M-1的作用下的新曲线的方程.
21-2.(选修4-4:参数方程)
以直角坐标系的原点O为极点,x轴的正半轴为极轴.已知点P的直角坐标为(1,-5),点M的极坐标为(4,),若直线l过点P,且倾斜角为 ,圆C以M为圆心、4为半径.
(1)求直线l关于t的参数方程和圆C的极坐标方程;
(2)试判定直线l和圆C的位置关系.

查看答案和解析>>

同步练习册答案