精英家教网 > 高中数学 > 题目详情

【题目】如图平面PAC⊥平面ABCACBCPE// BCMN分别是AEAP的中点,且△PAC是边长为2的等边三角形,BC=3PE =2.

1)求证:MN⊥平面PAC

2)求平面PAE与平面ABC夹角的余弦值.

【答案】1)证明见解析;(2.

【解析】

1)由三角形中位线可得,由面面垂直性质定理可得平面,进而可得结果;

2)取AC的中点F连接PF,取AB的中点G连接GF,以F为坐标原点,FCx轴,FGy轴建立空间直角坐标系,分别求出平面PAE与平面ABC的法向量,求出法向量的夹角即可得出结果.

1)证明: 分别是的中点,

的一条中位线,

平面平面,交线为AC,且

平面,又平面

2)取AC的中点F连接PF

为的等边三角形,

又平面平面,交线为AC

平面

AB的中点G连接GF

易知,又平面平面ABC

平面

故以F为坐标原点,FCx轴,FGy轴建立空间直角坐标系

A(-100),E(02),

=(xyz)为平面PAE的一个法向量

,则x=-3y=0, 所以

平面知,为平面ABC的一个法向量

设平面PAE与平面ABC的夹角为

即平面PAE与平面夹角的余弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在四棱锥中,已知平面,点为线段的中点.

1)求证:平面

2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)当时,求曲线与曲线的公切线的方程;

2)设函数的两个极值点为,求证:关于的方程有唯一解.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为分别为椭圆的左右焦点,点为椭圆上的一动点,面积的最大值为2.

1)求椭圆的方程;

2)直线与椭圆的另一个交点为,点,证明:直线与直线关于轴对称.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙、丙、丁、戊5个文艺节目在三家电视台播放,要求每个文艺节目只能独家播放,每家电视台至少播放其中的一个,则不同的播放方案的种数为(

A.150B.210C.240D.280

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知椭圆过点,椭圆的离心率为.

1)求椭圆的标准方程;

2)如图,设直线与圆相切与点,与椭圆相切于点,当为何值时,线段长度最大?并求出最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线),圆),抛物线上的点到其准线的距离的最小值为.

1)求抛物线的方程及其准线方程;

2)如图,点是抛物线在第一象限内一点,过点P作圆的两条切线分别交抛物线于点ABAB异于点P),问是否存在圆使AB恰为其切线?若存在,求出r的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知abc分别是△ABC三个内角ABC所对的边,且.

1)求B

2)若b2,且sinAsinBsinC成等差数列,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】作家马伯庸小说《长安十二时辰》中,靖安司通过长安城内的望楼传递信息.同名改编电视剧中,望楼传递信息的方式有一种如下:如图所示,在九宫格中,每个小方格可以在白色和紫色(此处以阴影代表紫色)之间变换,从而一共可以有512种不同的颜色组合,即代表512种不同的信息.现要求每一行,每一列上至多有一个紫色小方格(如图所示即满足要求).则一共可以传递______种信息.(用数字作答)

查看答案和解析>>

同步练习册答案