精英家教网 > 高中数学 > 题目详情
在长方体中,,过三点的平面截去长方体的一个角后,得到如图所示的几何体,且这个几何体的体积为

(1)求棱的长;
(2)求点到平面的距离.
(1)3(2)

试题分析:解:(1)设,由题设
,即,解得
的长为
(2)以点为坐标原点,分别以所在的直线为轴,轴,轴建立空间直角坐标系.
由已知及(1),可知
设平面的法向量为,有
其中,则有解得,取,得平面的一个法向量,且
在平面上取点,可得向量,于是点到平面的距离
点评:求点到平面的距离,可通过向量方法来求解,有时也可通过三棱锥的体积来求解(等体积法)。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥中,底面为菱形,的中点。

(1)若,求证:平面
(2)点在线段上,,试确定的值,使

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在三棱柱中, ,点的中点,.

(Ⅰ)求证:∥平面
(Ⅱ)设点在线段上,,且使直线和平面所成的角的正弦值为,求的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知长方形ABCD中,AB=2,A1,B1分别是AD,BC边上的点,且AA1=BB1="1," E,F分别为B1D与AB的中点. 把长方形ABCD沿直线折成直角二面角,且.

(1)求证:
(2)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在五棱锥P—ABCDE中,PA⊥平面ABCDE,AB∥CD,AC∥ED,AE∥BC, ABC=,AB=2,BC=2AE=4,是等腰三角形.

(Ⅰ)求证:平面PCD⊥平面PAC;
(Ⅱ)求四棱锥P—ACDE的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在三棱锥A-BCD中,△ABD和△BCD是两个全等的等腰直角三角形,O为BD的中点,且AB=AD=CB=CD=2,AC=

(1)当时,求证:AO⊥平面BCD;
(2)当二面角的大小为时,求二面角的正切值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

圆柱的侧面展开图是边长为6π和4π的矩形,则圆柱的表面积为        .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知是不同的平面,是不同的直线,则下列命题不正确的(    )
A.若B.若,则
C.若,则D.若

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

三棱锥的高为,若三个侧面两两垂直,则一定为△的(   )
A.垂心 B.外心C.内心D.重心

查看答案和解析>>

同步练习册答案