精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,过点的直线与抛物线相交于点两点,设

(1)求证:为定值

(2)是否存在平行于轴的定直线被以为直径的圆截得的弦长为定值?如果存在,求出该直线方程和弦长,如果不存在,说明理由.

【答案】(1)详见解析;(2)详见解析.

【解析】

试题分析:(1)联立直线方程与抛物线方程,利用韦达定理即可求解;(2)假设存在符合题意的直线,设出直线方程,利用圆的性质求解是否符合题意即可.

试题解析1)当直线垂直于轴时因此(定值)

当直线不垂直于轴时,设直线的方程为

因此有为定值;(2)设存在直线满足条件,则的中点因此以为直径的圆的半径

点到直线的距离所截弦长为

时,弦长为定值2,这时直线方程为.

【思路点睛】求解定值问题的方法一般有两种:1.从特殊入手求出定点、定值、定线再证明定点、定值、定线与变量无关;2.直接计算、推理并在计算、推理的过程中消去变量从而得到定点、定值、定线.应注意到繁难的代数运算是此类问题的特点设而不求方法、整体思想和消元的思想的运用可有效地简化运算.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若函数上不具有单调性,求实数的取值范围;

2)若.

)求实数的值;

)设,当时,试比较的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】图为一简单组合体,其底面ABCD为正方形,平面,且=2 .

1答题指定的方框内已给出了该几何体的俯视图,请在方框内画出该几何体的正视图和侧视图;

2求证:平面.

3求四棱锥B-CEPD的体积;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,其中

1时,恒成立,求的取值范围;

2讨论函数的极值点的个数,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以一个等边三角形的底边所对应的中线为旋转轴旋转一周所得的几何体是(

A.一个圆柱B.一个圆锥C.一个圆台D.两个圆锥

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆,直线.

(1)判断直线与圆C的位置关系;

2)若定点P(1,1)分弦AB为,求此时直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】学校对任课教师年龄状况和接受教育程度(学历)部分结果(人数分布)如表:

学历

35岁以下

35~50岁

50岁以上

本科

80

30

20

研究生

x

20

y

(1)用分层抽样的方法在35~50岁年龄段的教师中抽取一个容量为5的样本将该样本看成一个总体从中任取2人求至少有1人的学历为研究生的概率;

(2)若按年龄状况用分层抽样的方法抽取N个人其中35岁以下48人50岁以上10人再从这N个人中随机抽取出1人此人的年龄为50岁以上的概率为求xy的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数据是杭州市100个普通职工的201610月份的收入(均不超过2万元),设这100个数据的中位数为,平均数为,方差为,如果再加上马云201610月份的收入(约100亿元),则相对于,这101个月收入数据( )

A. 平均数可能不变,中位数可能不变,方差可能不变

B. 平均数大大增大,中位数可能不变,方差也不变

C. 平均数大大增大,中位数一定变大,方差可能不变

D. 平均数大大增大,中位数可能不变,方差变大

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,侧棱,底面为直角梯形,其中,.

1求证:侧面PAD底面ABCD

2求三棱锥的表面积.

查看答案和解析>>

同步练习册答案