精英家教网 > 高中数学 > 题目详情

【题目】已知等式x4a1x3a2x2a3xa4(x1)4b1(x1)3b2(x1)2b3(x1)b4定义映射f(a1a2a3a4)(b1b2b3b4)f(4,3,2,1)(  )

A. (1,2,3,4) B. (0,3,4,0)

C. (0,-3,4,-1) D. (1,0,2,-2)

【答案】C

【解析】x4a1x3a2x2a3xa4

[(x1)1]4b1[(x1)1]3b2[(x1)1]2b3[(x1)1]b4

f(4,3,2,1)[(x1)1]44[(x1)1]33[(x1)1]22[(x1)1]1

b1 (1)40b2 (1)24 (1)=-3

b34b4=-1故选C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】定义在[1,+∞)上的函数f(x)满足:①f(2x)=2f(x);②当2≤x≤4时,f(x)=1-|x-3|.则函数g(x)=f(x)-2在区间[1,28]上的零点个数为________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正四棱锥的各条棱长都相等,且点分别是的中点.

1求证:

(2)在上是否存在点,使平面平面,若存在,求出的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1, 在直角梯形中, 为线段的中点. 沿折起,使平面 平面,得到几何体,如图2所示.

1)求证: 平面

2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线的参数方程为为参数),在以为极点, 轴的正半轴为极轴的极坐标系中,曲线是圆心为,半径为1的圆.

(1)求曲线 的直角坐标方程;

(2)设为曲线上的点, 为曲线上的点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司计划购买2台机器该种机器使用三年后即被淘汰.机器有一易损零件在购进机器时可以额外购买这种零件作为备件每个200元.在机器使用期间如果备件不足再购买则每个500元.现需决策在购买机器时应同时购买几个易损零件为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数得下面柱状图:

以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率X表示2台机器三年内共需更换的易损零件数n表示购买2台机器的同时购买的易损零件数.

(1)X的分布列;

(2)若要求P(Xn)0.5确定n的最小值;

(3)以购买易损零件所需费用的期望值为决策依据n19n20之中选其一应选用哪个?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,函数.

(1)若函数上为减函数,求实数的取值范围;

(2)令,已知函数,若对任意,总存在 ,使得成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在“新零售”模式的背景下,某大型零售公司为推广线下分店,计划在市的区开设分店.为了确定在该区开设分店的个数,该公司对该市已开设分店的其他区的数据作了初步处理后得到下列表格.记表示在各区开设分店的个数, 表示这个分店的年收入之和.

(个)

2

3

4

5

6

(百万元)

2.5

3

4

4.5

6

(Ⅰ)该公司已经过初步判断,可用线性回归模型拟合的关系,求关于的线性回归方程;

(Ⅱ)假设该公司在区获得的总年利润(单位:百万元)与之间的关系为,请结合(Ⅰ)中的线性回归方程,估算该公司应在区开设多少个分店,才能使区平均每个分店的年利润最大?

参考公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥中,底面是直角梯形, ,且 ,侧面底面是等边三角形.

1)求证:

2)求二面角的大小.

查看答案和解析>>

同步练习册答案