精英家教网 > 高中数学 > 题目详情
若正数a,b满足,直线ax+by=1与圆x2+y2=1相切,则a+b的最大值是(  )
A、4
B、2
2
C、2
D、
2
考点:圆的切线方程
专题:直线与圆
分析:由已知得a2+b2=1,设a+b=m,则圆心O到直线a+b-m=0等于半径1时,能求出m的最大值为
2
解答: 解:∵直线ax+by=1与圆x2+y2=1相切,
∴圆心O(0,0)到直线ax+by-1=0的距离d=
|-1|
a2+b2
=1,
即a2+b2=1,
设a+b=m,
则圆心O到直线a+b-m=0等于半径1时,
即d′=
|-m|
2
=1,
解得m=±
2

∴m的最大值为
2

故选:D.
点评:本题考查两数和的最大值的求法,是中档题,解题时要认真审题,注意点到直线的距离公式的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

从装有2个白球和2个蓝球的口袋中任取2个球,那么对立的两个事件是(  )
A、“恰有一个白球”与“恰有两个白球”
B、“至少有一个白球”与“至少有-个蓝球”
C、“至少有-个白球”与“都是蓝球”
D、“至少有一个白球”与“都是白球”

查看答案和解析>>

科目:高中数学 来源: 题型:

已知0<x<1,化简|x|+
(x-1)2
的结果是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

果农随机选取某类果树50株作为样本测量它们每一株的果实产量(单位:kg),获得的所有数据按照区间(40,50],(50,60],(60,70],(70,80]进行分组,得到频率分布直方图如图,已知样本中产量在区间(50,60]上的果树株数是产量在区间(60,80]上的果树株数的
4
3
倍.
(1)求a,b的值;
(2)估计该类果树的平均产量;
(3)为了进一步分析该类果树的情况,现要用分层抽样的方法,从中再抽取20株,那么在(60,70]区间内应抽取多少株?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在R上的奇函数,且当x>0时,f(x)=2x-3•2-x
(1)求函数f(x)的解析式;
(2)求方程f(x)=
1
2
的负数解.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知0<α<
π
2
,cosα-sinα=-
5
5
,则
sin2α-cos2α+1
1-tanα
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列结论:
①命题“?x∈R,sinx≠1”的否定是“?x∈R,sinx=1”;
②命题“有些正方形是平行四边形”的否定是“所有正方形不都是平行四边形”;
③命题“A1,A2是对立事件”是命题“A1,A2是互斥事件”的充分不必要条件;
④若a,b是实数,则“a+b>0且ab>0”是“a>0且b>0”的必要不充分条件.
其中正确结论的是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)的定义域是{x|x>0},并且满足:当x>1时,f(x)>2;?x1,x2∈(0,+∞),都有f(x1x2)=f(x1)f(x2)-f(x1)-f(x2)+2
(1)求f(1)
(2)求证函数f(x)在(1,+∞)上单调递增.
(3)当f(2)=5时,求不等式f(x)<17的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合M={y|y=-x2+1,x∈R},N={y|y=x2,x∈R},全集I=R,则M∪N等于(  )
A、{(x,y)|x=±
2
2
,y=
1
2
,x,y∈R}
B、{(x,y)|x≠±
2
2
,y≠
1
2
,x,y∈R}
C、{y|y≤0,或y≥1}
D、R

查看答案和解析>>

同步练习册答案