精英家教网 > 高中数学 > 题目详情

【题目】已知正项数列的首项,前n项和满足

(1)求数列的通项公式;

(2)若数列是公比为4的等比数列,且也是等比数列,若数列单调递增,求实数的取值范围;

(3)若数列都是等比数列,且满足,试证明: 数列中只存在三项.

【答案】(1) (2) (3)见解析

【解析】

(1)先根据和项与通项关系得项之间递推关系,再根据等差数列定义以及通项公式得结果,(2)先根据条件解得,再根据数列单调性得恒成立,最后根据最值得结果, (3)先反设超过项,再通过方程组求解公比,通过矛盾否定假设,即得结果.

解:(1) ,故当

两式做差得

为正项数列知,,即为等差数列,故

(2)由题意, ,化简得 ,所以

所以

由题意知

恒成立,即恒成立,所以,解得

(3)不妨设超过项,令,由题意,则有

带入,可得 (*),

,即为常数数列,与条件矛盾;

,令,令,两式作商,可得,带入(*)得,即为常数数列,与条件矛盾,故这样的只有.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】以平面直角坐标系的原点为极点,轴的正半轴为极轴,建立极坐标系,已知直线的参数方程是 (m>0,t为参数),曲线的极坐标方程为

(1)求直线的普通方程和曲线的直角坐标方程;

(2)若直线轴交于点,与曲线交于点,且,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆右焦点,离心率为,过作两条互相垂直的弦,设中点分别为

(1) 求椭圆的标准方程;

(2)求以为顶点的四边形的面积的取值范围;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥的底面为直角梯形,,且

为等边三角形,平面平面;点分别为的中点.

(1)证明:平面

(2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数是奇函数.

(1)求实数的值;

(2)设函数,是否存在非零实数,使得方程恰好有两个解?若存在,求出的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数是偶函数.

(1)求实数的值;

(2)当时,函数存在零点,求实数的取值范围;

(3)设函数,若函数的图像只有一个公共点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】朱载堉(1536—1611),明太祖九世孙,音乐家、数学家、天文历算家,在他多达百万字的著述中以《乐律全书》最为著名,在西方人眼中他是大百科全书式的学者王子。他对文艺的最大贡献是他创建了“十二平均律”,此理论被广泛应用在世界各国的键盘乐器上,包括钢琴,故朱载堉被誉为“钢琴理论的鼻祖”。“十二平均律”是指一个八度有13个音,相邻两个音之间的频率之比相等,且最后一个音频率是最初那个音频率的2倍,设第二个音的频率为,第八个音的频率为,则等于

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线CO为坐标原点,FC的右焦点,过F的直线与C的两条渐近线的交点分别为M、N.OMN为直角三角形,则|MN|=

A. B. 3 C. D. 4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形ABCD为直角梯形,试作出绕其各条边所在的直线旋转所得到的几何体.

查看答案和解析>>

同步练习册答案