精英家教网 > 高中数学 > 题目详情
2.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1上恒存在一点p(x,y)到x轴与y轴的距离比为3,求离心率范围.

分析 由题意,|y|=3|x|,可得$\frac{{x}^{2}}{{a}^{2}}$-$\frac{9{x}^{2}}{{b}^{2}}$=1,利用x的范围,即可求离心率范围.

解答 解:由题意,|y|=3|x|,
∴$\frac{{x}^{2}}{{a}^{2}}$-$\frac{9{x}^{2}}{{b}^{2}}$=1,
∴1≥${a}^{2}(\frac{1}{{a}^{2}}-\frac{9}{{b}^{2}})$,且$\frac{1}{{a}^{2}}-\frac{9}{{b}^{2}}$>0,
∴b2>9a2
∴e>$\sqrt{10}$.

点评 本题考查双曲线的方程与性质,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.已知正四棱锥P-ABCD的侧棱与底面所成角为60°,M为PA中点,连接DM,则DM与平面PAC所成角的大小是45°.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知复数z=1-i(i虚数单位),则$|\frac{2}{z}+{z^2}|$=(  )
A.2B.$\sqrt{10}$C.$\sqrt{2}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知f(x)=(a2$-\frac{5}{2}$a+2)ax是指数函数且在R上单调递增
(1)求f(x)
(2)已知g(x)=pf(2x)-f(x)+p+2在[-2,2]上的值域为[$\frac{11}{4}$,15],求p值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设函数f(x)=(log2x)2-log2x2a+a2-1,在[2a-1,2${\;}^{{a}^{2}-2a+2}$]上的值域为[-1,0],求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,在四边形PABC中,PB⊥AC,AD=BD=1,AC=3,E是PC上一点,且PE:EC=1:2,现将△PAC沿AC进行翻折,得到如图②所示的三棱锥P-ABC.
(1)证明:DE∥平面PAB;
(2)证明:在翻折的过程中,总有平面PDB⊥平面ABC.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,正三棱柱ABC-A′B′C′中,F是线段B′C′的中点,D,E分别是线段BB′,B′C′上的点,连接DE,BF,A′E,A′F,A′D,A′B,AC′,且2B′D=DB,B′E=$\frac{1}{4}$B′C′.
(1)探究平面A′BF与平面BCC′B′的位置关系,并进行说明;
(2)证明:AC′∥平面 A′DE.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.若直线l与椭圆$\frac{{x}^{2}}{12}$+$\frac{{y}^{2}}{4}$=1相交于A、B两点,满足$\overrightarrow{OA}$⊥$\overrightarrow{OB}$,且直线1与圆x2+y2=r2相切.
(1)求圆的方程;
(2)求弦长|AB|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知二次函数的图象的顶点是(2,3),且经过点(3,1),求这个函数.

查看答案和解析>>

同步练习册答案