精英家教网 > 高中数学 > 题目详情
8.如图1,已知四边形BCDE为直角梯形,∠B=90°,BE∥CD,且BE=2CD=2BC=2,A为BE的中点.将△EDA沿AD折到△PDA位置(如图2),连结PC,PB构成一个四棱锥P-ABCD.

(Ⅰ)求证AD⊥PB;
(Ⅱ)若PA⊥平面ABCD.
①求二面角B-PC-D的大小;
②在棱PC上存在点M,满足$\overrightarrow{PM}$=λ$\overrightarrow{PC}$(0≤λ≤1),使得直线AM与平面PBC所成的角为45°,求λ的值.

分析 (Ⅰ)推导出ABCD为平行四边形,AD∥BC,AD⊥BE,AD⊥AB,AD⊥PA,从而AD⊥平面PAB,由此能证明AD⊥PB.
(Ⅱ)①以点A为坐标原点,分别以AB,AD,AP为x,y,z轴,建立空间直角坐标系,利用向量法能求出二面角B-PC-D的大小.
②求出平面PBC的法向量,由直线AM与平面PBC所成的角为45°,能求出λ的值.

解答 证明:(Ⅰ)在图1中,∵AB∥CD,AB=CD,
∴ABCD为平行四边形,∴AD∥BC,
∵∠B=90°,∴AD⊥BE,
当△EDA沿AD折起时,AD⊥AB,AD⊥AE,即AD⊥AB,AD⊥PA,
又AB∩PA=A,∴AD⊥平面PAB,
又∵PB?平面PAB,∴AD⊥PB.
解:(Ⅱ)①以点A为坐标原点,分别以AB,AD,AP为x,y,z轴,建立空间直角坐标系,
则A(0,0,0),B(1,0,0),C(1,1,0),P(0,0,1),
$\overrightarrow{PC}$=(1,1,-1),$\overrightarrow{BC}$=(0,1,0),$\overrightarrow{DC}$=(1,0,0),
设平面PBC的法向量为$\overrightarrow{n}$=(x,y,z),
则$\left\{\begin{array}{l}{\overrightarrow{PC}•\overrightarrow{n}=x+y-z=0}\\{\overrightarrow{BC}•\overrightarrow{n}=y=0}\end{array}\right.$,取z=1,得$\overrightarrow{n}$=(1,0,1),
设平面PCD的法向量$\overrightarrow{m}$=(a,b,c),
则$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{PC}=a+b-c=0}\\{\overrightarrow{m}•\overrightarrow{DC}=a=0}\end{array}\right.$,取b=1,得$\overrightarrow{m}$=(0,1,1),
设二面角B-PC-D的大小为θ,
则cosθ=-$\frac{|\overrightarrow{m}•\overrightarrow{n}|}{|\overrightarrow{m}|•|\overrightarrow{n}|}$=-$\frac{1}{\sqrt{2}×\sqrt{2}}$=-$\frac{1}{2}$,∴θ=120°.
∴二面角B-PC-D的大小为120°.
②设AM与面PBC所成角为α,
$\overrightarrow{AM}=\overrightarrow{AP}+\overrightarrow{PM}$=(0,0,1)+λ(1,1,-1)=(λ,λ,1-λ),
平面PBC的法向量$\overrightarrow{n}$=(1,0,0),
∵直线AM与平面PBC所成的角为45°,
∴sinα=|cos<$\overrightarrow{AM},\overrightarrow{n}$>|=$\frac{|\overrightarrow{AM}•\overrightarrow{n}|}{|\overrightarrow{AM}|•|\overrightarrow{n}|}$=$\frac{|λ+1-λ|}{\sqrt{2}•\sqrt{{λ}^{2}+{λ}^{2}+(1-λ)^{2}}}$=$\frac{\sqrt{2}}{2}$,
解得λ=0或$λ=\frac{2}{3}$.

点评 本题考查异面直线垂直的证明,考查二面角的大小的求法,考查实数值的求法,是中档题,解题时要认真审题,注意向量法的便于合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.在整数集中,不等式$\frac{2x+3}{2-x}$≥1的解集为{1}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.在ABC中,a=1,B=45°,S△ABC=2,则△ABC的外接圆的直径是5$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知函数f(x)=ex-ln(x+m).x=0是f(x)的极值点,则m=1,函数的增区间为(0,+∞)减区间为(-1,0).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.某校高一、高二和高三年级分别有学生1000名、800名、700名,现运用分层抽样的方法从中抽取容量为100的样本,则抽出的高二年级的学生人数为32.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.平面上有两个定点A、B,任意放置5个点C1、C2、C3、C4、C5,使其与A、B两点均不重合,如果存在Ci、Cj(i>j,i,j∈{1,2,3,4,5})使不等式|sin∠ACiB-sin∠ACjB|≤$\frac{1}{4}$成立,则称(Ci,Cj))为一个点对,则这样的点对(  )
A.不存在B.至少有1对C.至多有1对D.恰有1对

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知命题p:(x-3)(x+1)<0,命题q:$\frac{x-2}{x-4}$<0,命题r:a<x<2a,其中a>0.若p∧q是r的充分条件,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在长度为6的线段上任取两点(端点除外),分成三条小线段
(1)若分成的三条线段的长度为整数,求这三条线段可以构成三角形的概率;
(2)若分成的三条线段的长度为实数,求这三条线段不可以构成三角形的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.不等式x2+8x<20的解集是(-10,2).

查看答案和解析>>

同步练习册答案