精英家教网 > 高中数学 > 题目详情
如图,线段AB的两个端点A、B分别在x轴,y轴上滑动,,点M是线段AB上一点,且点M随线段AB的滑动而运动.
(I)求动点M的轨迹E的方程
(II)过定点N的直线交曲线E于C、D两点,交y轴于点P,若的值
(I);(II)-8.
(1)本小题属于相关点法求轨迹方程,设,可以用表示
再代入,可得动点M的轨迹方程.
(II)由条件不难判断直线L的斜率存在,然后设其方程为与动点M的轨迹方程联立消y后得到关于x的一元二次方程,然后借助韦达定理,判断式来解决是解决此类问题的基本思路.本小题设,则然后将韦达定理代入式子证明即可.
解:(I)设,得

∴动点M的轨迹E的方程为
(II)显然,直线L的斜率存在,设其方程为
,令联立 得




练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆的左、右顶点分别为为短轴的端点,△的面积为,离心率是
(Ⅰ)求椭圆的方程;
(Ⅱ)若点是椭圆上异于的任意一点,直线与直线分别交于两点,证明:以为直径的圆与直线相切于点 (为椭圆的右焦点).

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分l2分)已知椭圆的的右顶点为A,离心率,过左焦点作直线与椭圆交于点P,Q,直线AP,AQ分别与直线交于点
(Ⅰ)求椭圆的方程;
(Ⅱ)证明以线段为直径的圆经过焦点

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C: 的一个顶点为A(2,0),离心率为,直线与椭圆C交于不同的两点M,N。
(1)  求椭圆C的方程
(2)  当的面积为时,求k的值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设椭圆,直线过椭圆左焦点且不与轴重合, 与椭圆交于,两点,当轴垂直时,,若点
(1)求椭圆的方程;
(2)直线绕着旋转,与圆交于两点,若,求的面积 的取值范围(为椭圆的右焦点)。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知为椭圆的两个焦点,P为椭圆上一点且,则此椭圆离心率的取值范围是(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆),直线为圆的一条切线并且过椭圆的右焦点,记椭圆的离心率为
(1)求椭圆的离心率的取值范围;
(2)若直线的倾斜角为,求的大小;
(3)是否存在这样的,使得原点关于直线的对称点恰好在椭圆上.若存在,求出的大小;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的中心在原点,焦点在轴上,离心率为,它与直线相交于P、Q两点,若,求椭圆方程。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知P为椭圆上一点,F1F2是椭圆的两个焦点,,则△F1PF2的面积是          .

查看答案和解析>>

同步练习册答案