精英家教网 > 高中数学 > 题目详情
4.设离散型随机变量ξ可能取到值为1,2,3,P(ξ=k)=ak+b(k=1,2,3),若ξ的数学期望Eξ=$\frac{7}{3}$,则a+b=$\frac{1}{6}$.

分析 由已知得(a+b)+2(2a+b)+3(3a+b)=$\frac{7}{3}$,且a+b+2a+b+3a+b=1,由此能求出a+b.

解答 解:∵设离散型随机变量ξ可能取到值为1,2,3,
P(ξ)=ak+b(k=1,2,3),ξ的数学期望Eξ=$\frac{7}{3}$,
∴(a+b)+2(2a+b)+3(3a+b)=$\frac{7}{3}$,且a+b+2a+b+3a+b=1,
解得a=$\frac{1}{6}$,b=0,
∴a+b=$\frac{1}{6}$.
故答案为:$\frac{1}{6}$.

点评 本题考查代数式的值的求法,是基础题,解题时要认真审题,注意离散型随机变量的分布列和数学期望的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.如图,点P在正方体ABCD-A1B1C1D1的表面上运动,且P到直线BC与直线C1D1的距离相等,如果将正方体在平面内展开,那么动点P的轨迹在展开图中的形状是(  )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知椭圆$\frac{x^2}{a^2}+{y^2}=1$的左、右焦点为F1、F2,点F1关于直线y=-x的对称点P仍在椭圆上,则△PF1F2的周长为2$\sqrt{2}$+2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$经过点($\frac{2}{3},\frac{{2\sqrt{6}}}{3}$),且其左焦点坐标为(-1,0).
(Ⅰ)求椭圆的方程;
(Ⅱ)过椭圆的右焦点作两条相互垂直的直线l,m,其中l交椭圆于M,N,m交椭圆于P,Q,求|MN|+|PQ|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设ξ是随机变量,且D(10ξ)=40,则D(ξ)等于(  )
A.400B.4C.40D.0.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2},x>0}\\{x+1,x≤0}\end{array}\right.$,g(x)=log2x,若f(a)+f[g(a)]=0,则实数a的值等于(  )
A.-1B.-2C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.函数y=|sinxcosx+$\frac{1}{3}$|的最小正周期是(  )
A.$\frac{π}{4}$B.$\frac{π}{2}$C.πD.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.过直线x=2上一点P作圆:x2+y2=1的两条切线PA,PB,则kPA•kPB的最小值为-$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.函数f(x)=2sin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)的图象如图所示,则ω=2,φ=$\frac{π}{6}$.

查看答案和解析>>

同步练习册答案