精英家教网 > 高中数学 > 题目详情

甲、乙两人进行围棋比赛,规定每局胜者得1分,负者得0分,比赛进行到有一方比对方多2分或打满6局时停止.设甲在每局中获胜的概率为,且各局胜负相互独立.已知第二局比赛结束时比赛停止的概率为.

(Ⅰ)求的值;

(Ⅱ)设表示比赛停止时已比赛的局数,求随机变量的分布列和数学期望

 

【答案】

(Ⅰ);(Ⅱ)详见解析.

【解析】

试题分析:(Ⅰ)根据题意将第二局比赛结束时比赛停止的两种情况分析得到,然后利用互斥事件的概率公式求解; (Ⅱ)依题意知X的所有可能取值,然后利用独立事件的概率公式求解概率.

试题解析:(Ⅰ)当甲连胜2局或乙连胜2局时,第二局比赛结束时比赛停止,故,      3分

解得.又,所以.      5分

(Ⅱ)依题意知X的所有可能取值为2,4,6。    6分

设每两局比赛为一轮,则该轮结束时比赛停止的概率为,若该轮结束时比赛还将继续,则甲、乙在该轮中必是各得一分,此时,该轮比赛结果对下轮比赛是否停止没有影响,从而有

,    9分

则随机变量的分布列为

X

2

4

6

P

.    12分

考点:1.互斥和独立事件的概率;2.分布列和期望.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

甲、乙两人进行围棋比赛,约定每局胜者得1分,负者得0分,比赛进行到有一人比对方多2分或下满6局时停止.设甲在每局中获胜的概率为p(p>
1
2
),且各局胜负相互独立.已知第二局比赛结束时比赛停止的概率为
5
9

(1)求p的值;
(2)设ξ表示比赛停止时已比赛的局数,求随机变量ξ的分布列和数学期望Eξ.

查看答案和解析>>

科目:高中数学 来源:0127 模拟题 题型:解答题

甲,乙两人进行围棋比赛,约定每局胜者得1分,负者得0分,比赛进行到有一人比对方多2分或打满6局时停止。设甲在每局中获胜的概率为p(p>),且各局胜负相互独立。已知第二局比赛结束时比赛停止的概率为
(1)求p的值;
(2)设ξ 表示比赛停止时已比赛的局数,求随机变量ξ 的分布列和数学期望Eξ 。

查看答案和解析>>

科目:高中数学 来源:2012-2013学年四川省成都外国语学校高三(上)10月月考数学试卷(解析版) 题型:解答题

甲、乙两人进行围棋比赛,约定每局胜者得1分,负者得0分,比赛进行到有一人比对方多2分或下满6局时停止.设甲在每局中获胜的概率为p(p>),且各局胜负相互独立.已知第二局比赛结束时比赛停止的概率为
(1)求p的值;
(2)设ξ表示比赛停止时已比赛的局数,求随机变量ξ的分布列和数学期望Eξ.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年江西省师大附中等重点学校高三联考数学试卷(理科)(解析版) 题型:解答题

甲、乙两人进行围棋比赛,约定每局胜者得1分,负者得0分,比赛进行到有一人比对方多2分或下满6局时停止.设甲在每局中获胜的概率为p(p>),且各局胜负相互独立.已知第二局比赛结束时比赛停止的概率为
(1)求p的值;
(2)设ξ表示比赛停止时已比赛的局数,求随机变量ξ的分布列和数学期望Eξ.

查看答案和解析>>

同步练习册答案