精英家教网 > 高中数学 > 题目详情
双曲线
x2
4
-
y2
k
=1
的离心率e∈(1,2),则k的取值范围是______.
由双曲线
x2
4
-
y2
k
=1
得a2=4,b2=k.
e=
c
a
=
1+
k
4
,且e∈(1,2),
1<
1+
k
4
<2

解得0<k<12.
故答案为(0,12).
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,F1(-c,0),F2(c,0)分别是双曲线C:
x2
a2
-
y2
b2
=1(a>0,b>0)的左,右焦点,过点F1作x轴的垂线交双曲线的上半部分于点P,过点F2作直线PF2的垂线交直线l:x=
a2
c
于点Q,若点Q的坐标为(1,-4).
(Ⅰ)求双曲线C的方程;
(Ⅱ)求∠F1PF2的角平分线所在直线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知双曲线C:
x2
a2
-
y2
b2
=1(a>0,b>0)的离心率为
3
,右准线方程为x=
3
3

(Ⅰ)求双曲线C的方程;
(Ⅱ)已知直线x-y+m=0与双曲线C交于不同的两点A,B,且线段AB的中点在圆x2+y2=5上,求m的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设双曲线C:
x2
a2
-
y2
b2
=1(a,b>0)的一条渐近线与抛物线x=y2的一个交点的横坐标为x0,若x0
1
2
,则双曲线C的离心率的取值范围是(  )
A.(1,
6
2
)
B.(1,
3
)
C.(
3
,+∞)
D.(
6
2
,+∞)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

焦点为F(0,10),渐近线方程为4x±3y=0的双曲线的方程是(  )
A.
y2
64
-
x2
36
=1
B.
x2
9
-
y2
16
=1
C.
y2
9
-
x2
16
=1
D.
x2
64
-
y2
36
=1

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知双曲线C:
x2
a2
-
y2
b2
=1
(a>0,b>0)的右焦点为F,过F且斜率为
3
的直线交C于A、B两点,若
AF
=4
FB
,则双曲线C的离心率为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

点P是双曲线
x2
4
-y2
=1的右支上一点,M、N分别是圆(x+
5
)2+y2
=1和圆(x-
5
)2+y2
=1上的点,则|PM|-|PN|的最大值是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知圆锥曲线mx2+4y2=4m的离心率e为方程2x2-5x+2=0的两根,则满足条件的圆锥曲线的条数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在双曲线x2-y2=8的右支上过右焦点F2的一条弦PQ,|PQ|=7,F1是左焦点,那么△F1PQ的周长为(  )
A.28B.8
2
C.14-8
2
D.14+8
2

查看答案和解析>>

同步练习册答案