精英家教网 > 高中数学 > 题目详情
设向量
a
=(sinx,cosx),
b
=(cosx,cosx),x∈R
,函数f(x)=
a
•(
a
+
b
)

(Ⅰ)求f(x)最大值和此时相应的x的值;
(Ⅱ)求使不等式f(x)≥
3
2
成立的x的取值集合.
分析:由向量的数量积的坐标表示及二倍角公式、辅助角公式可得f(x)=
2
2
sin(2x+
π
4
)+
3
2

(I)当2x+
π
4
=
1
2
π+2kπ
函数有最大值,可求
(II)由f(x)≥
3
2
可得
3
2
+
2
2
sin(2x+
π
4
)≥
3
2
即sin(2x+
π
4
)≥0,结合正弦函数的性质可求
解答:解:∵f(x)=
a
•(
a
+
b
)
=(sinx,cosx)•(sinx+cosx,2cosx)
=sin2x+sinxcosx+2cos2x=1+
1
2
sin2x
+
1+cos2x
2

=
3
2
+
1
2
(sin2x+cos2x)

f(x)=
2
2
sin(2x+
π
4
)+
3
2

(I)当2x+
π
4
=
1
2
π+2kπ
当x=
π
8
+kπ,k∈Z
时,f(x)取最大值
3+
2
2

(II)由f(x)≥
3
2
可得
3
2
+
2
2
sin(2x+
π
4
)≥
3
2

∴sin(2x+
π
4
)≥0
2kπ≤2x+
π
4
≤2kπ+π

kπ-
π
8
≤ x≤kπ+
8
,k∈Z
∴不等式的解集是{x|kπ-
π
8
≤ x≤kπ+
8
,k∈Z}
点评:本题是基础题,考查三角函数的化简求值,向量的数量积的应用,三角函数的最值的求法,考查计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设向量
a
=(sinx,1),
b
=(1,cosx)
,记f(x)=
a
b
,f′(x)是f(x)的导函数.
(I)求函数F(x)=f(x)f′(x)+f2(x)的最大值和最小正周期;
(II)若f(x)=2f′(x),求
1+2sin2x
cos2x-sinxcosx
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设向量
a
=(sinx,
3
cosx)
b
=(cosx,cosx)

(1)若
a
b
(0<x<
π
2
),求tanx的值;
(2)求函数f(x)=
a
b
的最小正周期和函数在x∈(0,
π
2
)
的最大值及相应x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设向量
a
=(sinx,
3
cosx)
b
=(cosx,cosx),(0<x<
π
2
)

(1)若
a
b
,求tanx的值;
(2)求函数f(x)=
a
b
的周期和函数最大值及相应x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设向量
a
=(sinx,cosx)
b
=(cosx,cosx),x∈R
,函数f(x)=
a
•(
a
+
b
)

(Ⅰ)求函数f(x)的最小正周期; 
(Ⅱ)求函数f(x)的单调增区间;
(Ⅲ)求函数f(x)在x∈[-
π
4
π
4
]
上的最大值和最小值.

查看答案和解析>>

同步练习册答案