精英家教网 > 高中数学 > 题目详情

若函数f(x)满足?m∈R,m≠0,对定义域内的任意x,f(x+m)=f(x)+f(m)恒成立,则称f(x)为m函数,现给出下列函数:
数学公式;  ②y=2x;③y=sinx;④y=1nx
其中为m函数的序号是________.(把你认为所有正确的序号都填上)

②③
分析:根据m函数定义逐项判断即可.
解答:①若,则由f(x+m)=f(x)+f(m)得,即
所以不存在常数m使f(x+m)=f(x)+f(m)成立,所以①不是m函数.
②若f(x)=2x,由f(x+m)=f(x)+f(m)得,2(x+m)=2x+2m,此时恒成立,所以②y=2x是m函数.
③若f(x)=sinx,由f(x+m)=f(x)+f(m)得sin(x+m)=sinx+sinm,所以当m=π时,f(x+m)=f(x)+f(m)成立,所以③y=sinx是m函数.
④若f(x)=1nx,则由f(x+m)=f(x)+f(m)得ln(x+m)=lnx+lnm,即ln(x+m)=lnmx,所以x+m=mx,要使x+m=mx成立则有,所以方程无解,所以④y=1nx不是m函数.所以为m函数的序号是②③.
故答案为:②③
点评:本题考查函数恒成立问题,考查学生利用所学知识分析解决新问题的能力,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数y=sin(ωx+φ)(ω>0,|φ|<
π
2
)
在同一个周期内,当x=
π
4
时y取最大值1,当x=
12
时,y取最小值-1.
(1)求函数的解析式y=f(x).
(2)函数y=sinx的图象经过怎样的变换可得到y=f(x)的图象?
(3)若函数f(x)满足方程f(x)=a(0<a<1),求在[0,2π]内的所有实数根之和.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=3sinxcosx-
3
2
cos2x,(x∈R)

(1)求函数f(x)的最小正周期;
(2)若函数f(x)满足f(x+m)=f(m-x),试求实数m的最小正值.

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)满足f(
1
x
)=-f(x)
,则称f(x)为倒负变换函数.下列函数:
y=x-
1
x
;②y=x+
1
x
;③f(x)=
-x, 0<x<1
0, x=1
x-1, x>1
中为倒负变换函数的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)满足f(x+3)=x,f-1(x)的定义域为[1,4],则f(x)的定义域为、(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•普陀区一模)若函数f(x)满足f(x+10)=2f(x+9),且f(0)=1,则f(10)=
210
210
_.

查看答案和解析>>

同步练习册答案