【题目】一艘船在航行过程中发现前方的河道上有一座圆拱桥.在正常水位时,拱桥最高点距水面8m,拱桥内水面宽32m,船只在水面以上部分高6.5m,船顶部宽8m,故通行无阻,如图所示.
(1)建立适当的平面直角坐标系,求正常水位时圆弧所在的圆的方程;
(2)近日水位暴涨了2m,船已经不能通过桥洞了.船员必须加重船载,降低船身在水面以上的高度,试问:船身至少降低多少米才能通过桥洞?(精确到0.1m, )
【答案】
(1)解:在正常水位时,设水面与桥横截面的交线为x轴,
过拱桥最高点且与水面垂直的直线为y轴,建立平面直角坐标系,
如图所示,则A,B,D三点的坐标分别为(﹣16,0),(16,0),(0,8).
又圆心C在y轴上,故可设C(0,b).
因为|CD|=|CB|,所以 ,解得b=﹣12.
所以圆拱所在圆的方程为:x2+(y+12)2=(8+12)2=202=400
(2)解:当x=4时,求得y≈7.6,即桥拱宽为8m的地方距正常水位时的水面约7.60m,…距涨水后的水面约5.6m,因为船高6.5m,顶宽8m,
所以船身至少降低6.5﹣5.6=0.9(m)以上,船才能顺利通过桥洞
【解析】(1)在正常水位时,设水面与桥横截面的交线为x轴,过拱桥最高点且与水面垂直的直线为y轴,建立平面直角坐标系建立坐标系,利用|CD|=|CB|,确定圆的方程;(2)令x=4时,求得y≈7.6,即桥拱宽为8m的地方距正常水位时的水面约7.60m,即可求得通过桥洞,船身至少应该降低多少.
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,已知射线OA:x﹣y=0(x≥0),OB:2x+y=0(x≥0).过点P(1,0)作直线分别交射线OA,OB于点A,B.
(1)当AB的中点在直线x﹣2y=0上时,求直线AB的方程;
(2)当△AOB的面积取最小值时,求直线AB的方程.
(3)当PAPB取最小值时,求直线AB的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】命题p:方程x2+mx+1=0有两个不等的正实数根,命题q:方程4x2+4(m+2)x+1=0无实数根.若“p或q”为真命题,求m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图(1),在正方形SG1G2G3中,E、F分别是G1G2、G2G3的中点,D是EF的中点,现沿SE、SF及EF把这个正方形折成一个几何体如图(2),使G1、G2、G3三点重合于点G.证明:
(1)G在平面SEF上的射影为△SEF的垂心;
(2)求二面角G﹣SE﹣F的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,正方形ACDE所在的平面与平面ABC垂直,M是CE和AD的交点,AC⊥BC,且AC=BC=2
(1)求证:AM⊥平面EBC
(2)(文)求三棱锥C﹣ABE的体积.
(3)(理)求二面角A﹣EB﹣C的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知过双曲线C: =1(a>0,b>0)的中心的直线交双曲线于点A,B,在双曲线C上任取与点A,B不重合的点P,记直线PA,PB,AB的斜率分别为k1 , k2 , k,若k1k2>k恒成立,则离心率e的取值范围为( )
A.1<e<
B.1<e≤
C.e>
D.e≥
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C:9x2+y2=m2(m>0),直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M.
(1)证明:直线OM的斜率与l的斜率的乘积为定值;
(2)若l过点( ,m),延长线段OM与C交于点P,四边形OAPB能否为平行四边形?若能,求此时l的斜率;若不能,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com