精英家教网 > 高中数学 > 题目详情
若P为椭圆
x2
9
+
y2
6
=1
上一点,F1和F2为椭圆的两个焦点,∠F1PF2=60°,则|PF1|•|PF2|的值为______.
∵椭圆方程为
x2
9
+
y2
6
=1

∴a=3,b=
6
,c=
3

由余弦定理得,
cos∠F1PF2=
|PF1|2+|PF2|2-|F1F2|2
2|PF1|•|PF2|

即,
|PF1|2+|PF2|2-12
2|PF1|•|PF2|
=
1
2

可化简为:(|PF1|+|PF2|)2-12=3|PF1|•|PF2|
由椭圆定义得
|PF1|+|PF2|=2a=6,
∴|PF1|•|PF2|=8
故答案为:8.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

已知椭圆:
x2
9
+
y2
b2
=1(0<b<3),左右焦点分别为F1,F2,过F1的直线交椭圆于A,B两点,若|
BF
2
|+|
AF
2
|的最大值为8,则b的值是(  )
A.2
2
B.
2
C.
3
D.
6

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知焦点在y轴上的椭圆
x2
m
+
y2
1
=1,其离心率为
3
2
,则实数m的值是(  )
A.4B.
1
4
C.4或
1
4
D.
1
2

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,已知A,B分别为椭圆
x2
a2
+
y2
b2
=1(a>b>)
的右顶点和上顶点,直线 lAB,l与x轴、y轴分别交于C,D两点,直线CE,DF为椭圆的切线,则CE与DF的斜率之积kCE•kDF等于(  )
A.±
a2
b2
B.±
a2-b2
a2
C.±
b2
a2
D.±
a2-b2
b2

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知点A是椭圆
x2
a2
+
y2
b2
=1(a>b>0)
上一点,F为椭圆的一个焦点,且AF⊥x轴,|AF|=焦距,则椭圆的离心率是(  )
A.
1+
5
2
B.
3
-1
C.
2
-1
D.
2
-
1
2

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知F1,F2分别是椭圆的左,右焦点,现以F2为圆心作一个圆恰好经过椭圆中心并且交椭圆于点M,N,若过F1的直线MF1是圆F2的切线,则椭圆的离心率为(  )
A.
3
-1
B.2-
3
C.
2
2
D.
3
2

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为
6
3
,长轴长为2
3
,直线l:y=kx+m交椭圆于不同的两点A,B.
(Ⅰ)求椭圆的方程;
(Ⅱ)若m=1,且
OA
OB
=0
,求k的值(O点为坐标原点);
(Ⅲ)若坐标原点O到直线l的距离为
3
2
,求△AOB面积的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

以知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的两个焦点分别为F1(-c,0)和F2(c,0)(c>0),过点E(
a2
c
,0)
的直线与椭圆相交于A,B两点,且F1AF2B,|F1A|=2|F2B|.
(1)求椭圆的离心率;
(2)求直线AB的斜率;
(3)设点C与点A关于坐标原点对称,直线F2B上有一点H(m,n)(m≠0)在△AF1C的外接圆上,求
n
m
的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知双曲线-y2=1的左、右顶点分别为A1,A2,点P(x1,y1),Q(x1,-y1)是双曲线上不同的两个动点.求直线A1P与A2Q交点的轨迹E的方程.

查看答案和解析>>

同步练习册答案