精英家教网 > 高中数学 > 题目详情

【题目】如图,在三棱锥中,顶点在底面上的投影在棱上,的中点.

1)求证:平面

2)求二面角的余弦值;

3)已知点的中点,在棱上是否存在点,使得平面,若存在,求的值;若不存在,说明理由.

【答案】1)见解析(23)存在,

【解析】

1)由题知:平面,所以平面平面,因为,所以平面,所以.又根据勾股定理得到,所以平面.

(2)首先以为坐标原点,分别以轴,轴,轴的正方向,建立空间直角坐标系,找到相应点的坐标,再分别求出平面和平面的法向量,带入公式计算即可.

(3)首先设,根据平面,得到,即可求出,再计算即可.

1)因为顶点在底面上的射影在棱上,

所以平面

因为平面

所以平面平面

因为,所以

因为平面平面

平面,所以平面

平面,所以

,所以

因为平面

平面平面

所以平面.

2)连接

因为的中点,的中点,

所以

如图,以为坐标原点,分别以轴,轴,轴的正方向,建立空间直角坐标系,

为平面的一个法向量,

.取,得

设平面的一个法向量

,取,则.

设二面角的平面角为

所以二面角的余弦值为.

3)设

因为平面

所以

所以.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数满足:①定义为;②.

1)求的解析式;

2)若;均有成立,求的取值范围;

3)设,试求方程的解.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左右顶点分别为,点是椭圆上异于的任意一点,设直线的斜率分别为,且,椭圆的焦距长为4.

1)求椭圆的标准方程;

2)过右焦点的直线交椭圆两点,分别记的面积为,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中国古代数学著作《算法统宗》中记载了这样的一个问题:三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还,其大意为:有一个人走了378里路,第一天健步行走,从第二天起其因脚痛每天走的路程为前一天的一半,走了6天后到达了目的地,问此人第三天走的路程里数为(

A.192B.48C.24D.88

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校需从甲、乙两名学生中选一人参加物理竞赛,这两名学生最近5次的物理竞赛模拟成绩如下表:

第一次

第二次

第三次

第四次

第五次

学生甲的成绩(分)

80

85

71

92

87

学生乙的成绩(分)

90

76

75

92

82

1)根据成绩的稳定性,现从甲、乙两名学生中选出一人参加物理竞赛,你认为选谁比较合适?

2)若物理竞赛分为初赛和复赛,在初赛中有如下两种答题方案:方案1:每人从5道备选题中任意抽出1道,若答对,则可参加复赛,否则被淘汰;方案2:每人从5道备选题中任意抽出3道,若至少答对其中2道,则可参加复赛,否则被淘汰.若学生乙只会5道备选题中的3道,则学生乙选择哪种答题方案进入复赛的可能性更大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,直线的参数方程为为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.

(1)写出直线的直角坐标方程;

(2)设点的坐标为,若点是曲线截直线所得线段的中点,求的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个不透明的盒子中关有蝴蝶、蜜蜂和蜻蜓三种昆虫共11只,现在盒子上开一小孔,每次只能飞出1只昆虫(假设任意1只昆虫等可能地飞出).若有2只昆虫先后任意飞出(不考虑顺序),则飞出的是蝴蝶或蜻蜓的概率是.

(1)求盒子中蜜蜂有几只;

(2)若从盒子中先后任意飞出3只昆虫(不考虑顺序),记飞出蜜蜂的只数为X,求随机变量X的分布列与数学期望E(X).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=x2+1gx)=4x+1,的定义域都是集合A,函数fx)和gx)的值域分别为ST

1)若A[12],求ST

2)若A[0m]ST,求实数m的值

3)若对于集合A的任意一个数x的值都有fx)=gx),求集合A

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】计划在某水库建一座至多安装3台发电机的水电站,过去50年的水文资料显示,水库年入流量(年入流量:一年内上游来水与库区降水之和.单位:亿立方米)都在40以上.其中,不足80的年份有10年,不低于80且不超过120的年份有35年,超过120的年份有5年.将年入流量在以上三段的频率作为相应段的概率,并假设各年的年入流量相互独立.

(1)求未来4年中,至多1年的年入流量超过120的概率;

(2)水电站希望安装的发电机尽可能运行,但每年发电机最多可运行台数受年入流量限制,并有如下关系:

年入流量

发电量最多可运行台数

1

2

3

若某台发电机运行,则该台年利润为5000万元;若某台发电机未运行,则该台年亏损800万元,欲使水电站年总利润的均值达到最大,应安装发电机多少台?

查看答案和解析>>

同步练习册答案