精英家教网 > 高中数学 > 题目详情

已知,其中为常数.
(Ⅰ)当函数的图象在点处的切线的斜率为1时,求函数上的最小值;
(Ⅱ)若函数上既有极大值又有极小值,求实数的取值范围;
(Ⅲ)在(Ⅰ)的条件下,过点作函数图象的切线,试问这样的切线有几条?并求这些切线的方程.

(Ⅰ);(Ⅱ);(Ⅲ)

解析试题分析:(Ⅰ)首先求的导数,利用导数的几何意义列出方程解这个方程即可得的值,从而得函数的解析式,最后利用求闭区间上函数最值的一般步骤求上的最小值;
(Ⅱ)先求的导数:,根据已知上有两不相等的实数根,将问题转化为一元二次方程上有两不相等的实数根,最后利用根的判别式及韦达定理列不等式组解决问题;(Ⅲ)由已知不一定是切点,需先设切点根据导数的几何意义,求函数在切点处的导函数值,再分(1)切点不与点重合;(2)切点与点重合,两种情况求曲线的切线方程.
试题解析:(Ⅰ)由已知得解得           1分
           2分
的变化关系如下表:







 




 



                  

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知是正实数,设函数
(Ⅰ)设,求的单调区间;
(Ⅱ)若存在,使成立,求的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数处取得极值.
(Ⅰ)求的值;
(Ⅱ)证明:当时,.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数.
(1)当时,求函数的最大值;
(2)令其图象上任意一点处切线的斜率恒成立,求实数的取值范围;
(3)当,方程有唯一实数解,求正数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)当时,求函数上的最大值;
(2)令,若在区间上不单调,求的取值范围;
(3)当时,函数的图象与轴交于两点,且,又的导函数.若正常数满足条件,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(I)求f(x)的单调区间;
(II)当时,若存在使得对任意的恒成立,求的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数(≠0,∈R)
(Ⅰ)若,求函数的极值和单调区间;
(Ⅱ)若在区间(0,e]上至少存在一点,使得成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数 
(1)当时,求函数的最大值;
(2)令)其图象上任意一点处切线的斜率 恒成立,求实数的取值范围;
(3)当,方程有唯一实数解,求正数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)当时,求函数的单调区间;
(2)求证:当时,对所有的都有成立.

查看答案和解析>>

同步练习册答案