设函数y=f(x)对任意实数x,都有f(x)=2f(x+1),当x∈[0,1]时,f(x)=x2(1-x).
(1)已知n∈N+,当x∈[n,n+1]时,求y=f(x)的解析式;
(2)求证:对于任意的n∈N+,当x∈[n,n+1]时,都有|f(x)|≤;
(3)对于函数y=f(x)(x∈[0,+∞),若在它的图象上存在点P,使经过点P的切线与直线x+y=1平行,那么这样点有多少个?并说明理由.
科目:高中数学 来源:江苏省泰州中学2012届高三上学期期中考试数学试题(人教版) 题型:044
设函数y=f(x)对任意实数x,都有f(x)=2f(x+1),当x∈[0,1]时,f(x)=x2(1-x).
(Ⅰ)已知n∈N+,当x∈[n,n+1]时,求y=f(x)的解析式;
(Ⅱ)求证:对于任意的n∈N+,当x∈[n,n+1]时,都有|f(x)|≤;
(Ⅲ)对于函数y=f(x)(x∈[0,+∞),若在它的图象上存在点P,使经过点P的切线与直线x+y=1平行,那么这样点有多少个?并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
设函数y=f(x),对任意实数x,y都有f(x+y)=f(x)+f(y)+2xy.
(1)求f(0)的值;
(2)若f(1)=1,求f(2),f(3),f(4)的值;
(3)在(2)的条件下,猜想f(n)(n∈N+)的表达式并用数学归纳法证明.
查看答案和解析>>
科目:高中数学 来源:2011届湖南省长沙市第一中学高三上学期第五次月考理科数学卷 题型:解答题
(本小题满分13分)
设函数y=f(x)的定义域为(0,+∞),且在(0,+∞)上单调递增,若对任意x,y∈(0,+∞)都有:f(xy)=f(x)+f(y)成立,数列{an}满足:a1=f(1)+1,f(-)+f(+)=0.设Sn=aa+aa+aa+…+aa+aa.
(1)求数列{an}的通项公式,并求Sn关于n的表达式;
(2)设函数g(x)对任意x、y都有:g(x+y)=g(x)+g(y)+2xy,若g(1)=1,正项数列{bn}满足:b=g(),Tn为数列{bn}的前n项和,试比较4Sn与Tn的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
设函数y=f(x)的定义域为(0,+∞),且在(0,+∞)上单调递增,若对任意x,y∈(0,+∞)都有:f(xy)=f(x)+f(y)成立,数列{an}满足:a1=f(1)+1,
f(-)+f(+)=0.设Sn=aa+aa+aa+…+aa+aa.
(1)求数列{an}的通项公式,并求Sn关于n的表达式;
(2)设函数g(x)对任意x、y都有:g(x+y)=g(x)+g(y)+2xy,若g(1)=1,正项数列{bn}满足:b=g(),Tn为数列{bn}的前n项和,试比较4Sn与Tn的大小.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com