精英家教网 > 高中数学 > 题目详情
函数的最大值是   
【答案】分析:由函数解析式求出函数的定义域,再利用柯西不等式,即可得到结论.
解答:解:由柯西不等式得,
=13,
当且仅当5 =12 时取等号,
此时函数取得最大值为 13.
故答案为:13.
点评:本题考查了柯西不等式求函数最值,关键是对所给函数解析式灵活变形,再应用柯西不等式,此类型是函数中两个根式变量的系数不互为相反数(互为相反数时可用基本不等式),但是符号相反,注意先求函数的定义域,验证等号成立的条件.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知二次函数y=ax2+(a2+1)x在x=1处的导数值为1,则该函数的最大值是(  )
A、
25
16
B、
25
8
C、
25
4
D、
25
2

查看答案和解析>>

科目:高中数学 来源: 题型:

18、已知函数y=ax3-15x2+36x-24,x∈[0,4]在x=3处有极值,则函数的最大值是
8

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实数x,y满足
y≥1
y≤2x-1
x+y≤m
,如果目标函数z=x-y的最小值是-1,那么此目标函数的最大值是(  )
A、1B、2C、3D、5

查看答案和解析>>

科目:高中数学 来源: 题型:

已知y=
(x-1)2   (x≥0)
2x             (x<0)
,若x∈〔0,m+1〕时,函数的最大值是f(m+1),则m的值取范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数y=ax2+(a2+1)x在x=1处的导数值为1,则该函数的最大值是
25
8
25
8

查看答案和解析>>

同步练习册答案