精英家教网 > 高中数学 > 题目详情
已知函数f(x)=2x2+2x+a(-2≤x≤2)
(1)写出函数f(x)的单调区间;
(2)若f(x)的最大值为64,求f(x)最小值.
分析:(1)令t=x2+2x+a,本题即求函数t在[-2,2]上的单调区间,利用二次函数的性质可得函数t的减区间和增区间.
(2)根据-2≤x≤2,求得t=(x+1)2+a-1的范围,再根据f(x)的最大值为64=2a+8,求得 a的值,可得f(x)的最小值.
解答:解:(1)令t=x2+2x+a=(x+1)2+a-1,∵-2≤x≤2,
再根据f(x)=2t,故本题即求函数t在[-2,2]上的单调区间.
结合二次函数的性质可得函数t的减区间为[-2,-1],增区间为 (-1 2].
(2)∵-2≤x≤2,t=(x+1)2+a-1,
∴x=-1时,t取得最小值为a-1,
当x=2时,函数t取得最大值为a+8.
再根据f(x)的最大值为64=2a+8,求得 a=-2,
故f(x)的最小值为2a-1=2-3=
1
8
点评:本题主要考查复合函数的单调性和值域,二次函数的性质,体现了转化的数学思想,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
2-xx+1

(1)求出函数f(x)的对称中心;
(2)证明:函数f(x)在(-1,+∞)上为减函数;
(3)是否存在负数x0,使得f(x0)=3x0成立,若存在求出x0;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2-x-1,x≤0
x
,x>0
,则f[f(-2)]=
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2(sin2x+
3
2
)cosx-sin3x

(1)求函数f(x)的值域和最小正周期;
(2)当x∈[0,2π]时,求使f(x)=
3
成立的x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2-
ax+1
(a∈R)
的图象过点(4,-1)
(1)求a的值;
(2)求证:f(x)在其定义域上有且只有一个零点;
(3)若f(x)+mx>1对一切的正实数x均成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2-2cosx
+
2-2cos(
3
-x)
,x∈[0,2π],则当x=
3
3
时,函数f(x)有最大值,最大值为
2
3
2
3

查看答案和解析>>

同步练习册答案