精英家教网 > 高中数学 > 题目详情
10.直线y=kx-2交抛物线y2=x于A、B两点,(1)求k的取值范围;(2)若AB的中点横坐标为2,求|AB|的值.

分析 (1)由直线与抛物线有两个交点,得到方程组有两个不同的解,利用判别式大于0求k 的范围.
(2)由$\left\{\begin{array}{l}{{y}^{2}=x}\\{y=kx-2}\end{array}\right.$,得ky2-y-2=0,再由根的判别式和韦达定理进行求解.

解答 解:(1)由$\left\{\begin{array}{l}{{y}^{2}=x}\\{y=kx-2}\end{array}\right.$,得ky2-y-2=0,直线与抛物线有两个交点,则k≠0,△=1+8k>0,解之k>$-\frac{1}{8}$且k≠0;
(2)由$\left\{\begin{array}{l}{{y}^{2}=x}\\{y=kx-2}\end{array}\right.$,得ky2-y-2=0,
设A(x1,y1),B(x2,y2),则k≠0,且1+8k>0,即k>-$\frac{1}{8}$且k≠0;
由韦达定理得:x1+x2=$\frac{1}{k}$,$\frac{{x}_{1}+{x}_{2}}{2}$=2,所以$\frac{1}{k}=4$,即k=$\frac{1}{4}$,$\sqrt{1+\frac{1}{16}}\sqrt{{4}^{2}+4×8}$=$\sqrt{51}$,
则|AB|=$\sqrt{1+\frac{1}{16}}\sqrt{{4}^{2}+4×8}$=$\sqrt{51}$.

点评 本题考查直线和圆锥曲线的位置关系的综合运用,解题时要认真审题,注意挖掘题设中的隐含条件,合理地进行等价转化.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.点P是底边长为2$\sqrt{3}$,高为2的正三棱柱表面上的动点,Q是该棱柱内切球表面上的动点,则|PQ|的取值范围是(  )
A.[0,$\sqrt{3}+1$]B.[0,$\sqrt{5}+1$]C.[0,3]D.[1,$\sqrt{5}+1$]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.周长为6,圆心角弧度为1的扇形面积等于(  )
A.1B.$\frac{3π}{2}$C.πD.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.命题“?x∈R,x2-x+1>0”的否定是(  )
A.?x0∈R  x02-x0+1<0B.?x0∈R  x02-x0+1≤0
C.?x∈R  x2-x+1<0D.?x∈R  x2-x+1≤0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.一元二次方程x2+2x+m=0有实数解的一个必要不充分条件为(  )
A.m<1B.m≤1C.m≥1D.m<2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.函数f(x)=$\frac{x}{{x}^{2}+x+1}$的值域是(  )
A.[-1,$\frac{1}{3}$)B.(-1,$\frac{1}{3}$]C.(-1,$\frac{1}{3}$)D.[-1,$\frac{1}{3}$]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.两条异面直线互成60°,过空间中任一点A可以作出几个平面与两异面直线都成45°角.(  )
A.一个B.两个C.三个D.四个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知实数a>0,命题p:?x∈R,|sinx|>a有解;命题q:?x∈[$\frac{\sqrt{2}}{2}$,1],x2+ax-1≥0恒成立.
(1)写出?q;        
(2)若p且q为真,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知非零向量$\overrightarrow{a},\overrightarrow{b}$,$\overrightarrow{AB}=\overrightarrow{a}+2\overrightarrow{b}$,$\overrightarrow{BC}=2\overrightarrow{a}-\overrightarrow{b}$,$\overrightarrow{CD}=\overrightarrow{a}+7\overrightarrow{b}$.
(1)试问:A,B,C,D四个点能否在一条直线上?证明你的结论.
(2)若A,B,C,D四点中仅有三点共线,求$\overrightarrow{a}$与$\overrightarrow{b}$满足的条件,并说明三点共线的理由.

查看答案和解析>>

同步练习册答案