精英家教网 > 高中数学 > 题目详情

【题目】已知函数,其中e是自然对数的底数,

1)求函数的单调区间;

2)设,讨论函数零点的个数,并说明理由.

【答案】1)增区间是,减区间是.2)见解析

【解析】

1)求导函数,分别令,解出不等式,即可得到函数的单调区间;

2)由 得方程 ,显然 为此方程的一个实数解., 方程可化简为,设函数利用导数得到 的最小值, 因为,再对讨论,得到函数的零点个数.

解:(1)因为,所以.

;由.

所以由的增区间是,减区间是.

2)因为.

,得.

,又不是的零点,

故只需再讨论函数零点的个数.

因为

所以当时,单调递减;

时,单调递增.

所以当时,取得最小值.

时,无零点;

时, 有唯一零点;

,即时,因为

所以上有且只有一个零点.

.

所以上单调递增,

所以,都有.

所以.

所以上有且只有一个零点.

所以当时,有两个零点

综上所述,当时,有一个零点;

时,有两个零点;

时,有三个零点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】小王于2015年底贷款购置了一套房子,根据家庭收入情况,小王选择了10年期每月还款数额相同的还贷方式,且截止2019年底,他没有再购买第二套房子.下图是2016年和2019年小王的家庭收入用于各项支出的比例分配图,根据以上信息,判断下列结论中正确的是(

A.小王一家2019年用于饮食的支出费用跟2016年相同

B.小王一家2019年用于其他方面的支出费用是2016年的3

C.小王一家2019年的家庭收入比2016年增加了1

D.小王一家2019年用于房贷的支出费用比2016年减少了

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是椭圆上一点,以点及椭圆的左、右焦点为顶点的三角形面积为

(Ⅰ)求椭圆的标准方程;

(Ⅱ)过作斜率存在且互相垂直的直线两交点的中点,两交点的中点,求△面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线的参数方程为为参数),在以原点O为极点,x的非负半轴为极轴建立的极坐标系中,直线的极坐标方程为

1)求曲线的普通方程和直线的直角坐标方程;

2)设直线x轴,y轴分别交于AB两点,点P是曲线上任意一点,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】分形理论是当今世界十分风靡和活跃的新理论、新学科.其中把部分与整体以某种方式相似的形体称为分形.分形是一种具有自相似特性的现象.图象或者物理过程.标准的自相似分形是数学上的抽象,迭代生成无限精细的结构.也就是说,在分形中,每一组成部分都在特征上和整体相似,只仅仅是变小了一些而已.谢尔宾斯基三角形就是一种典型的分形,是由波兰数学家谢尔宾斯基在1915年提出的,其构造方法如下:取一个实心的等边三角形(如图1),沿三边的中点连线,将它分成四个小三角形,挖去中间的那一个小三角形(如图2),对其余三个小三角形重复上述过程(如图3).若图1(阴影部分)的面积为1,则图4(阴影部分)的面积为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知xy之间的几组数据如表:

x

1

2

3

4

y

1

m

n

4

如表数据中y的平均值为2.5,若某同学对m赋了三个值分别为1.522.5,得到三条线性回归直线方程分别为,对应的相关系数分别为,下列结论中错误的是(

参考公式:线性回归方程中,其中.相关系数

A.三条回归直线有共同交点B.相关系数中,最大

C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知abc均为正数,设函数fx)=|xb||x+c|+axR

1)若a2b2c2,求不等式fx)<3的解集;

2)若函数fx)的最大值为1,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在棱长为1的正方体中,P为线段上的动点,下列说法正确的是(

A.对任意点P平面

B.三棱锥的体积为

C.线段DP长度的最小值为

D.存在点P,使得DP与平面所成角的大小为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)当时,总有,求的最小值;

2)对于中任意恒有,求的取值范围.

查看答案和解析>>

同步练习册答案