精英家教网 > 高中数学 > 题目详情

(本小题满分13分)

已知的三边长成等差数列,若点的坐标分别为

(1)求顶点的轨迹的方程;

(2)若线段的延长线交轨迹于点,当时,求线段的垂直平分线轴交点的横坐标的取值范围.

解:(1)因为成等差数列,点的坐标分别为所以

由椭圆的定义可知点的轨迹是以为焦点长轴为4的椭圆(去掉长轴的端点),

所以.故顶点的轨迹方程为.…………4分

(2)由题意可知直线的斜率存在,设直线方程为

,…………6分

两点坐标分别为,则

,所以线段CD中点E的坐标为,故CD垂直平分线l的方程为,令y=0,得轴交点的横坐标为,由,解得

又因为,所以.当时,有,此时函数递减,所以.所以,.故直线轴交点的横坐标的范围是.……13分

练习册系列答案
相关习题

科目:高中数学 来源:2015届江西省高一第二次月考数学试卷(解析版) 题型:解答题

(本小题满分13分)已知函数.

(1)求函数的最小正周期和最大值;

(2)在给出的直角坐标系中,画出函数在区间上的图象.

(3)设0<x<,且方程有两个不同的实数根,求实数m的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年福建省高三年级八月份月考试卷理科数学 题型:解答题

(本小题满分13分)已知定义域为的函数是奇函数.

(1)求的值;(2)判断函数的单调性;

(3)若对任意的,不等式恒成立,求k的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年福建省高三年级八月份月考试卷理科数学 题型:解答题

(本小题满分13分)已知集合, ,.

(1)求(∁; (2)若,求的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:河南省09-10学年高二下学期期末数学试题(理科) 题型:解答题

 

(本小题满分13分)如图,正三棱柱的所有棱长都为2,的中点。

(Ⅰ)求证:∥平面

(Ⅱ)求异面直线所成的角。www.7caiedu.cn           

 

 

 

 

 

 


[来源:KS5

 

 

 

 

U.COM

查看答案和解析>>

科目:高中数学 来源:2010-2011学年福建省高三5月月考调理科数学 题型:解答题

(本小题满分13分)

已知为锐角,且,函数,数列{}的首项.

(1) 求函数的表达式;

(2)在中,若A=2,,BC=2,求的面积

(3) 求数列的前项和

 

 

查看答案和解析>>

同步练习册答案