£¨2013•²ýƽÇø¶þÄ££©ÇúÏßCÊÇƽÃæÄÚµ½Ö±Ïßl1£ºx=-1ºÍÖ±Ïßl2£ºy=1µÄ¾àÀëÖ®»ýµÈÓÚ³£Êýk2£¨k£¾0£©µÄµãµÄ¹ì¼££®¸ø³öÏÂÁÐËĸö½áÂÛ£º
¢ÙÇúÏßC¹ýµã£¨-1£¬1£©£»
¢ÚÇúÏßC¹ØÓڵ㣨-1£¬1£©¶Ô³Æ£»
¢ÛÈôµãPÔÚÇúÏßCÉÏ£¬µãA£¬B·Ö±ðÔÚÖ±Ïßl1£¬l2ÉÏ£¬Ôò|PA|+|PB|²»Ð¡ÓÚ2k£»
¢ÜÉèp1ΪÇúÏßCÉÏÈÎÒâÒ»µã£¬ÔòµãP1¹ØÓÚÖ±Ïßx=-1¡¢µã£¨-1£¬1£©¼°Ö±Ïßy=1¶Ô³ÆµÄµã·Ö±ðΪP1¡¢P2¡¢P3£¬ÔòËıßÐÎP0P1P2P3µÄÃæ»ýΪ¶¨Öµ4k2£®
ÆäÖУ¬ËùÓÐÕýÈ·½áÂÛµÄÐòºÅÊÇ
¢Ú¢Û¢Ü
¢Ú¢Û¢Ü
£®
·ÖÎö£ºÓÉÌâÒâÇúÏßCÊÇƽÃæÄÚµ½Ö±Ïßl1£ºx=-1ºÍÖ±Ïßl2£ºy=1µÄ¾àÀëÖ®»ýµÈÓÚ³£Êýk2£¨k£¾0£©µÄµãµÄ¹ì¼££®ÀûÓÃÖ±½Ó·¨£¬É趯µã×ø±êΪ£¨x£¬y£©£¬¼°¿ÉµÃµ½¶¯µãµÄ¹ì¼£·½³Ì£¬È»ºóÓÉ·½³ÌÌص㼴¿É¼ÓÒÔÅжϣ®
½â´ð£º½â£ºÓÉÌâÒâÉ趯µã×ø±êΪ£¨x£¬y£©£¬ÔòÀûÓÃÌâÒâ¼°µãµ½Ö±Ïß¼äµÄ¾àÀ빫ʽµÄµÃ£º|x+1||y-1|=k2£¬
¶ÔÓÚ¢Ù£¬½«£¨-1£¬1£©´úÈëÑéÖ¤£¬´Ë·½³Ì²»¹ý´Ëµã£¬ËùÒÔ¢Ù´í£»
¶ÔÓÚ¢Ú£¬°Ñ·½³ÌÖеÄx±»-2-x´ú»»£¬y±»2-y ´ú»»£¬·½³Ì²»±ä£¬¹Ê´ËÇúÏß¹ØÓÚ£¨-1£¬1£©¶Ô³Æ£®¢ÚÕýÈ·£»
¶ÔÓÚ¢Û£¬ÓÉÌâÒâÖªµãPÔÚÇúÏßCÉÏ£¬µãA£¬B·Ö±ðÔÚÖ±Ïßl1£¬l2ÉÏ£¬Ôò|PA|¡Ý|x+1|£¬|PB|¡Ý|y-1|
¡à|PA|+|PB|¡Ý2
|PA||PB|
=2k£¬¢ÛÕýÈ·£»
¶ÔÓڢܣ¬ÓÉÌâÒâÖªµãPÔÚÇúÏßCÉÏ£¬¸ù¾Ý¶Ô³ÆÐÔ£¬
ÔòËıßÐÎP0P1P2P3µÄÃæ»ý=2|x+1|¡Á2|y-1|=4|x+1||y-1|=4k2£®ËùÒÔ¢ÜÕýÈ·£®
¹Ê´ð°¸Îª£º¢Ú¢Û¢Ü£®
µãÆÀ£º´ËÌâÖص㿼²éÁËÀûÓÃÖ±½Ó·¨Çó³ö¶¯µãµÄ¹ì¼£·½³Ì£¬²¢»¯¼ò£¬ÀûÓ÷½³ÌÅжÏÇúÏߵĶԳÆÐÔ£¬ÊôÓÚ»ù´¡Ì⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•²ýƽÇø¶þÄ££©iÊÇÐéÊýµ¥Î»£¬Ôò¸´Êýz=
2i-1
i
ÔÚ¸´Æ½ÃæÄÚ¶ÔÓ¦µÄµãÔÚ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•²ýƽÇø¶þÄ££©ÉèÊýÁÐ{an}£¬¶ÔÈÎÒân¡ÊN*¶¼ÓУ¨kn+b£©£¨a1+an£©+p=2£¨a1+a2¡­+an£©£¬£¨ÆäÖÐk¡¢b¡¢pÊdz£Êý£©£®
£¨1£©µ±k=0£¬b=3£¬p=-4ʱ£¬Çóa1+a2+a3+¡­+an£»
£¨2£©µ±k=1£¬b=0£¬p=0ʱ£¬Èôa3=3£¬a9=15£¬ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨3£©ÈôÊýÁÐ{an}ÖÐÈÎÒ⣨²»Í¬£©Á½ÏîÖ®ºÍÈÔÊǸÃÊýÁÐÖеÄÒ»ÏÔò³Æ¸ÃÊýÁÐÊÇ¡°·â±ÕÊýÁС±£®µ±k=1£¬b=0£¬p=0ʱ£¬ÉèSnÊÇÊýÁÐ{an}µÄÇ°nÏîºÍ£¬a2-a1=2£¬ÊÔÎÊ£ºÊÇ·ñ´æÔÚÕâÑùµÄ¡°·â±ÕÊýÁС±{an}£¬Ê¹µÃ¶ÔÈÎÒân¡ÊN*£¬¶¼ÓÐSn¡Ù0£¬ÇÒ
1
12
£¼
1
S1
+
1
S2
+
1
S3
+¡­+
1
Sn
£¼
11
18
£®Èô´æÔÚ£¬ÇóÊýÁÐ{an}µÄÊ×Ïîa1µÄËùÓÐÈ¡Öµ£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•²ýƽÇø¶þÄ££©¶ÔÓÚÈý´Îº¯Êýf£¨x£©=ax3+bx2+cx+d£¨a¡Ù0£©£¬¸ø³ö¶¨Ò壺Éèf¡ä£¨x£©ÊǺ¯Êýy=f£¨x£©µÄµ¼Êý£¬f¡å£¨x£©ÊǺ¯Êýf¡ä£¨x£©µÄµ¼Êý£¬Èô·½³Ìf¡å£¨x£©=0ÓÐʵÊý½âx0£¬Ôò³Æ£¨x0£¬f£¨x0£©£©Îªº¯Êýy=f£¨x£©µÄ¡°¹Õµã¡±£®Ä³Í¬Ñ§¾­¹ý̽¾¿·¢ÏÖ£ºÈκÎÒ»¸öÈý´Îº¯Êý¶¼ÓС°¹Õµã¡±£»ÈκÎÒ»¸öÈý´Îº¯Êý¶¼ÓжԳÆÖÐÐÄ£¬ÇÒ¡°¹Õµã¡±¾ÍÊǶԳÆÖÐÐÄ£®¸ø¶¨º¯Êýf(x)=
1
3
x3-
1
2
x2+3x-
5
12
£¬ÇëÄã¸ù¾ÝÉÏÃæ̽¾¿½á¹û£¬½â´ðÒÔÏÂÎÊÌâ
£¨1£©º¯Êýf£¨x£©=
1
3
x3-
1
2
x2+3x-
5
12
µÄ¶Ô³ÆÖÐÐÄΪ
£¨
1
2
£¬1£©
£¨
1
2
£¬1£©
£»
£¨2£©¼ÆËãf(
1
2013
)+f(
2
2013
)+f(
3
2013
)
+¡­+f£¨
2012
2013
£©=
2012
2012
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•²ýƽÇø¶þÄ££©Èçͼ£¬Ôڱ߳¤Îª2µÄÁâÐÎABCDÖУ¬¡ÏBAD=60¡ã£¬EΪCDµÄÖе㣬Ôò
AE
BD
=
1
1
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•²ýƽÇø¶þÄ££©Ô²x2+£¨y-2£©2=1µÄÔ²Ðĵ½Ö±Ïß
x=3+t
y=-2-t
£¨tΪ²ÎÊý£©µÄ¾àÀëΪ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸