精英家教网 > 高中数学 > 题目详情
证明三角恒等式
【答案】分析:证明的思路是化简左边式子,方法是利用2倍角公式和同角三角函数的基本关系,得到式子与右边相等即可.
解答:证明:左边=2sin4x+(2sinxcosx)2+5cos4x-cos(2x+x)cosx
=2sin4x+3sin2xcos2x+5cos4x-(cos2xcosx-sin2xsinx)cosx
=2sin4x+3sin2xcos2x+5cos4x-[(2cos2x-1)cosx-2sin2xcosx]cosx
=2sin4x+3sin2xcos2x+5cos4x-[2cos3x-cosx-2(1-cos2x)cosx]cosx
=2sin4x+3sin2xcos2x+5cos4x-(4cos3x-3cosx)cosx
=2sin4x+3sin2xcos2x+cos4x+3cos2x
=(2sin2x+cos2x)(sin2x+cos2x)+3cos2x
=2sin2x+cos2x+3cos2x
=2+2cos2x=2(1+cos2x)=右边
点评:考查学生理解三角函数恒等式的证明思路,运用和差倍分的三角函数及同角三角函数的基本关系的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

证明三角恒等式2sin4x+
34
sin22x+5cos4x-cos3xcosx=2(1+cos2x)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•福建)某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数.
(1)sin213°+cos217°-sin13°cos17°
(2)sin215°+cos215°-sin15°cos15°
(3)sin218°+cos212°-sin18°cos12°
(4)sin2(-18°)+cos248°-sin2(-18°)cos48°
(5)sin2(-25°)+cos255°-sin2(-25°)cos55°
(Ⅰ)试从上述五个式子中选择一个,求出这个常数
(Ⅱ)根据(Ⅰ)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

观察下列几个三角恒等式:
①tan10°tan20°+tan20°tan60°+tan60°tan10°=1;
②tan5°tan100°+tan100°tan(-15°)+tan(-15°)tan5°=1;
③tan13°tan35°+tan35°tan42°+tan42°tan13°=1.
一般地,若tanα,tanβ,tanγ都有意义,你从这三个恒等式中猜想得到的一个结论为
当α+β+γ=90°时,tanαtanβ+tanβtanγ+tanγtanα=1
当α+β+γ=90°时,tanαtanβ+tanβtanγ+tanγtanα=1
.试证明结论.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

证明三角恒等式2sin4x+
3
4
sin22x+5cos4x-cos3xcosx=2(1+cos2x)

查看答案和解析>>

同步练习册答案