精英家教网 > 高中数学 > 题目详情
10.若函数f(x)=x2+3x-4在x∈[-1,3]上的最大值和最小值分别为M,N,则M+N=8.

分析 求出f(x)的对称轴,可得区间[-1,3]为增区间,可得最值,即可得到M+N的值.

解答 解:函数f(x)=x2+3x-4的对称轴为x=-$\frac{3}{2}$,
区间[-1,3]在对称轴的右边,
即有f(x)在区间[-1,3]递增,
可得最小值N=f(-1)=-6;
最大M=f(3)=14,
可得M+N=8.
故答案为:8.

点评 本题考查二次函数的最值的求法,注意讨论对称轴和区间的关系,考查运算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=x2-x+1,g(x)=2x4-18x2+12x+68.
(1)如果不等式f(x)≥ax2+a对任意的x∈R恒成立,求实数a的取值范围;
(2)是否存在正实数M,使得不等式f(x)+$\sqrt{g(x)}$≥M对任意的x∈R恒成立,求出M的最大值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知数列{an}中a1=1,nan=(n+1)an+1,则a2016=$\frac{1}{2016}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.椭圆$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{12}$=1的左焦点为F1,点P在椭圆上,如果线段PF1的中点M在y轴正半轴上,那么以线段F1P为直径的圆的标准方程为x2+(y-$\frac{3}{2}$)2=$\frac{25}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.化简$\sqrt{1-si{n}^{2}160°}$=(  )
A.cos20°B.-cos20°C.±cos20°D.±|cos20°|

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.在平面直角坐标系xOy中,双曲线x2-y2=1的渐近线方程是y=±x.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知数列{an},对于任意n∈N*,都有an=n2-bn,是否存在一个整数m,使得当b<m时,数列{an}为递增数列?这样的整数是否唯一?是否存在最大的整数?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知△ABC的三个角A,B,C所对的边分别为a,b,c,且a2+b2-ab=c2,则C=(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在△ABC中,角A,B,C的对边分别是a,b,c,向量$\overrightarrow{p}$=(a,2b-c),$\overrightarrow{q}$=(cosA,cosC),且$\overrightarrow{p}$∥$\overrightarrow{q}$
(1)求角A的大小;
(2)设f(x)=cos(ωx-$\frac{A}{2}$)+sinωx(ω>0)且f(x)的最小正周期为π,求f(x)在区间[0,$\frac{π}{2}$]上的值域.

查看答案和解析>>

同步练习册答案