精英家教网 > 高中数学 > 题目详情
已知正三棱锥S-ABC中,E是侧棱SC的中点,且SA⊥BE,则SB与底面ABC所成角的余弦值为
6
3
6
3
分析:过点S作SO⊥平面ABC,连接OB,则点O为正三角形ABC的中心,∠SBO即为所求角,确定各侧面是全等的等腰直角三角形,即可得到结论.
解答:解:过点S作SO⊥平面ABC,连接OB,则点O为正三角形ABC的中心,∠SBO即为所求角
∵AO是AS在平面ABC内的射影,且AO⊥BC
∴SA⊥BC
又SA⊥BE,∴SA⊥平面SBC,∴SA⊥SC,SA⊥SB
Rt△SAB内,设SA=SB=a,则AB=
2
a,OB=
2
3
3
2
2
a
=
6
3
a
∴cos∠OBS=
OB
SB
=
6
3

故答案为:
6
3
点评:本题考查线面角,考查学生的计算能力,正确作出线面角是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知正三棱锥S-ABC的侧棱与底面边长相等,E,F分别为SC,AB的中点,则异面直线EF与SA所成角的大小是
π
4
π
4

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•南充三模)已知正三棱锥S-ABC的侧棱与底面边长相等,E、F分别为侧棱SC底边AB的中点,则异面直线EF与SA所成角的大小是(  )

查看答案和解析>>

科目:高中数学 来源:数学教研室 题型:044

已知正三棱锥S-ABC中,高SO==3,底面边长为,过棱AB作截面ABD交侧棱SC于点D,截面与底面所成二面角为q,当q为何值时,SC与平面ABD垂直?

查看答案和解析>>

科目:高中数学 来源:2012年四川省南充市高考数学三模试卷(理科)(解析版) 题型:选择题

已知正三棱锥S-ABC的侧棱与底面边长相等,E、F分别为侧棱SC底边AB的中点,则异面直线EF与SA所成角的大小是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源:2012年四川省南充市高考数学三模试卷(文科)(解析版) 题型:选择题

已知正三棱锥S-ABC的侧棱与底面边长相等,E、F分别为侧棱SC底边AB的中点,则异面直线EF与SA所成角的大小是( )
A.
B.
C.
D.

查看答案和解析>>

同步练习册答案