精英家教网 > 高中数学 > 题目详情

【题目】(本小题满分14分)已知函数

)求函数的单调递增区间;

)证明:当时,

)确定实数的所有可能取值,使得存在,当时,恒有

【答案】;()详见解析;(

【解析】

试题分析:(1)先求出函数的导数,令导函数大于0,解出即可;(2)构造函数Fx=fx-x+1,先求出函Fx)的导数,根据函数的单调性证明即可;(3)通过讨论k的范围,结合函数的单调性求解即可

试题解析:(1)得.

,解得

的单调递增区间是

2)令,

则有

时,

所以上单调递减,

故当时,,即当时,

3)由()知,当时,不存在满足题意。

时,对于,有

从而不存在满足题意。

时,令

得,

解得

时,,故内单调递增。

从而当

综上吗,k的取值范围是

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图所示,ABCD是一块边长为7米的正方形铁皮,其中ATN是一半径为6米的扇形,已经被腐蚀不能使用,其余部分完好可利用.工人师傅想在未被腐蚀部分截下一个有边落在BC与CD上的长方形铁皮,其中P是弧TN上一点.设,长方形的面积为S平方米.

(1)求关于的函数解析式;

(2)求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《算法统宗》是中国古代数学名著,由明代数学家程大位所著,该作完善了珠算口诀,确立了算盘用法,完成了由筹算到珠算的彻底转变,该作中有题为“李白沽酒”“李白街上走,提壶去买酒。遇店加一倍,见花喝一斗,三遇店和花,喝光壶中酒。借问此壶中,原有多少酒?”,如图为该问题的程序框图,若输出的值为0,则开始输入的值为(

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知都是定义域为的连续函数.已知:满足:①当时,恒成立;②都有满足:①都有②当时,.若关于的不等式恒成立,则的取值范围是

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】二次函数在区间上有最大值4,最小值0.

1)求函数的解析式;

2)设,若时恒成立,求的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数都在处取得最小值.

(1)求的值;

(2)设函数的极值点之和落在区间,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】直线与曲线有两个不同的交点,则实数的取值范围是__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆)经过点,且两个焦点的坐标依次为.

(1)求椭圆的标准方程;

(2)设是椭圆上的两个动点,为坐标原点,直线的斜率为,直线的斜率为,若,证明:直线与以原点为圆心的定圆相切,并写出此定圆的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某网店经营的一种商品进行进价是每件10元,根据一周的销售数据得出周销售量(件)与单价(元)之间的关系如下图所示,该网店与这种商品有关的周开支均为25元.

(1)根据周销售量图写出(件)与单价(元)之间的函数关系式;

(2)写出利润(元)与单价(元)之间的函数关系式;当该商品的销售价格为多少元时,周利润最大?并求出最大周利润.

查看答案和解析>>

同步练习册答案