精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)的部分图象如图所示,且f(α)=1,α∈(0, ),则cos(2α+ )=(
A.
B.
C.﹣
D.

【答案】C
【解析】解:由图象可得A=3, =4( ),解得ω=2, 故f(x)=3sin(2x+φ),代入点( ,﹣3)可得3sin( +φ)=﹣3,
故sin( +φ)=﹣1, +φ=2kπ﹣ ,∴φ=2kπ﹣ ,k∈Z
结合0<φ<π可得当k=1时,φ= ,故f(x)=3sin(2x+ ),
∵f(α)=3sin(2α+ )=1,∴sin(2α+ )=
∵α∈(0, ),∴2α+ ∈( ),
∴cos(2α+ )=﹣ =﹣
故选:C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知圆,圆,动圆与圆外切并且与圆内切,圆心轨迹为曲线

(1)求曲线的方程;

(2)若是曲线上关于轴对称的两点,点,直线交曲线

于另一点,求证:直线过定点,并求该定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=Asin(ωx+φ) 的部分图象如图所示,若 ,且f(x1)=f(x2)(x1≠x2),则f(x1+x2)=(
A.1
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数对称轴方程为,在上的奇函数满足:当时,.

(1)求函数的解析式;

(2)判断方程的根的个数,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某程序框图如图所示,则该程序运行后输出的值是(
A.2014
B.2015
C.2016
D.2017

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=sin(x+ )+sin(x﹣ )+cosx+a(a∈R,a为常数). (Ⅰ)求函数f(x)的最小正周期;
(Ⅱ)若函数f(x)在[﹣ ]上的最大值与最小值之和为 ,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】三国时期吴国的数学家赵爽创制了一幅“勾股方圆图”,用数形结合的方法给出了勾股定理的详细证明.如图所示的“勾股方圆图”中,四个全等的直角三角形与中间的小正方形拼成一个边长为2的大正方形,若直角三角形中较小的锐角,现在向该正方形区域内随机地投掷一枚飞镖,飞镖落在小正方形内的概率是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在极坐标系中,点坐标是,曲线的方程为;以极点为坐标原点,极轴为轴的正半轴建立平面直角坐标系,斜率是的直线经过点

(1)写出直线的参数方程和曲线的直角坐标方程;

(2)求证直线和曲线相交于两点,并求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥的底面ABCD是正方形,为等边三角形,M,N分别是AB,AD的中点,且平面平面ABCD.

证明:平面PNB;

设点E是棱PA上一点,若平面DEM,求

查看答案和解析>>

同步练习册答案