【题目】已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)的部分图象如图所示,且f(α)=1,α∈(0, ),则cos(2α+ )=( )
A.
B.
C.﹣
D.
科目:高中数学 来源: 题型:
【题目】已知圆:,圆:,动圆与圆外切并且与圆内切,圆心轨迹为曲线.
(1)求曲线的方程;
(2)若是曲线上关于轴对称的两点,点,直线交曲线
于另一点,求证:直线过定点,并求该定点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数f(x)=Asin(ωx+φ) 的部分图象如图所示,若 ,且f(x1)=f(x2)(x1≠x2),则f(x1+x2)=( )
A.1
B.
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=sin(x+ )+sin(x﹣ )+cosx+a(a∈R,a为常数). (Ⅰ)求函数f(x)的最小正周期;
(Ⅱ)若函数f(x)在[﹣ , ]上的最大值与最小值之和为 ,求实数a的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】三国时期吴国的数学家赵爽创制了一幅“勾股方圆图”,用数形结合的方法给出了勾股定理的详细证明.如图所示的“勾股方圆图”中,四个全等的直角三角形与中间的小正方形拼成一个边长为2的大正方形,若直角三角形中较小的锐角,现在向该正方形区域内随机地投掷一枚飞镖,飞镖落在小正方形内的概率是( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在极坐标系中,点坐标是,曲线的方程为;以极点为坐标原点,极轴为轴的正半轴建立平面直角坐标系,斜率是的直线经过点.
(1)写出直线的参数方程和曲线的直角坐标方程;
(2)求证直线和曲线相交于两点、,并求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥的底面ABCD是正方形,为等边三角形,M,N分别是AB,AD的中点,且平面平面ABCD.
证明:平面PNB;
设点E是棱PA上一点,若平面DEM,求.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com