精英家教网 > 高中数学 > 题目详情

【题目】设函数f(x)=x2﹣ax+a+3,g(x)=ax﹣2a.
(1)若函数h(x)=f(x)﹣g(x)在[﹣2,0]上有两个零点,求实数a的取值范围;
(2)若存在x0∈R,使得f(x0)≤0与g(x0)≤0同时成立,求实数a的最小值.

【答案】
(1)

解:由已知,h(x)=f(x)﹣g(x)=x2﹣2ax+3a+3=0在[﹣2,0]上有两个不同的实数解,

所以

解得


(2)

解:由已知,

(1)+(2)得 ,得a≥3,

再由(2)得x0≤2,由(1)得 ,得x0>1,

于是,问题等价于:a≥3,且存在x0∈(1,2]满足

令t=x0﹣1∈(0,1],

因为 在(0,1]上单调递减,

所以φ(t)≥φ(1)=7,即a≥7,

故实数a的最小值为7.


【解析】(1)由h(x)在区间内的两个零点,结合图形,得到需要满足的条件.(2)由f(x0)≤0与g(x0)≤0同时成立,得到得a≥3,可将问题转化为最值问题,由单调性得到最值,即可.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】阅读如图所示的程序框图,当输出的结果S为0时,判断框中应填(
A.n≤4
B.n≤5
C.n≤7
D.n≤8

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知四棱锥的底面为直角梯形, ,且 .

(1)求证:平面平面

(2)设,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】精准扶贫是巩固温饱成果、加快脱贫致富、实现中华民族伟大“中国梦”的重要保障.某地政府在对某乡镇企业实施精准扶贫的工作中,准备投入资金将当地农产品进行二次加工后进行推广促销,预计该批产品销售量万件(生产量与销售量相等)与推广促销费万元之间的函数关系为(其中推广促销费不能超过5千元).已知加工此农产品还要投入成本万元(不包括推广促销费用),若加工后的每件成品的销售价格定为元/件.

(1)试将该批产品的利润万元表示为推广促销费万元的函数;(利润=销售额-成本-推广促销费)

(2)当推广促销费投入多少万元时,此批产品的利润最大?最大利润为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设圆的圆心为,直线过点且与轴不重合,交圆两点,过的平行线交于点.

(1)证明:为定值,并写出点的轨迹方程;

(2)设点的轨迹为曲线,直线两点,为坐标原点,求面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若学生一天学习数学超过两个小时的概率为(每天是相互独立没有影响的),一周内至少有四天每天学习数学超过两个小时,就说该生本周数学学习是投入的.

(Ⅰ)①设学生本周一天学习数学超过两个小时的天数为的分布列与数学期望

②求学生本周数学学习投入的概率.

(Ⅱ)为了研究学生学习数学的投入程度和本周数学周练成绩的关系,随机在年级中抽取了名学生进行调查,所得数据如下表所示:

成绩理想

成绩不太理想

合计

数学学习投入

20

10

30

数学学习不太投入

10

15

25

合计

30

25

55

根据上述数据能否有的把握认为“学生学习数学的投入程度和本周数学成绩两事件有关”?

附:

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数对一切实数都有 成立,且.

(1)求的值;

(2)求的解析式;

(3)已知,设:当时,不等式 恒成立;Q:当时,是单调函数。如果满足成立的的集合记为,满足Q成立的的集合记为,求A∩(CRB)(为全集).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知四棱锥P﹣ABCD的底面ABCD为菱形,且∠ABC=60°,
AB=PC=2,PA=PB=

(1)求证:平面PAB⊥平面ABCD;
(2)设H是PB上的动点,求CH与平面PAB所成最大角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】等差数列中, 其前项和为.

1求数列的通项公式;

(2)设数列满足其前项和为为求证: .

查看答案和解析>>

同步练习册答案