精英家教网 > 高中数学 > 题目详情

【题目】如图,在下列四个正方体中,AB为正方体的两个顶点,MNQ为所在棱的中点,则在这四个正方体中,直接AB与平面MNQ不平行的是

A. B. C. D.

【答案】A

【解析】对于B,易知ABMQ,则直线AB∥平面MNQ;对于C,易知ABMQ,则直线AB∥平面MNQ;对于D,易知ABNQ,则直线AB∥平面MNQ.故排除B,C,D,选A.

点睛:本题主要考查线面平行的判定定理以及空间想象能力,属容易题.证明线面平行的常用方法:①利用线面平行的判定定理,使用这个定理的关键是设法在平面内找到一条与已知直线平行的直线,可利用几何体的特征,合理利用中位线定理、线面平行的性质或者构造平行四边形、寻找比例式证明两直线平行.②利用面面平行的性质,即两平面平行,在其中一平面内的直线平行于另一平面.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】《中华人民共和国道路交通安全法》规定:车辆驾驶员血液酒精浓度在20~80mg/100mL(不含80)之间,属于酒后驾车;在80mg/100mL(含80)以上时,属于醉酒驾车.某市公安局交通管理部门在某路段的一次拦查行动中,依法检查了300辆机动车,查处酒后驾车和醉酒驾车的驾驶员共20人,检测结果如表:

酒精含量(mg/100mL)

[20,30)

[30,40)

[40,50)

[50,60)

[60,70)

[70,80)

[80,90)

[90,100)

人数

3

4

1

4

2

3

2

1


(1)绘制出检测数据的频率分布直方图(计算并标上选取的y轴单位长度,在图中用实线画出矩形框并用阴影表示),估计检测数据中酒精含量的众数
(2)求检测数据中醉酒驾驶的频率,并估计检测数据中酒精含量的中位数、平均数(请写出计算过程).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C经过点A(1,3)、B(2,2),并且直线m:3x﹣2y=0平分圆C.
(1)求圆C的方程;
(2)若过点D(0,1),且斜率为k的直线l与圆C有两个不同的交点M、N.
(Ⅰ)求实数k的取值范围;
(Ⅱ)若 =12,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知A(x1 , y1),B(x2 , y2)是函数f(x)= 的图象上的任意两点(可以重合),点M在直线x= 上,且 =
(1)求x1+x2的值及y1+y2的值;
(2)已知S1=0,当n≥2时,Sn=f( )+f( )+f( )+…+f( ),求Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= sinxcosx﹣sin2x+
(1)求f(x)的最小正周期值;
(2)求f(x)的单调递增区间;
(3)求f(x)在[0, ]上的最值及取最值时x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】Sn为等比数列的前n项和,已知S2=2,S3=-6.

(1)求的通项公式;

(2)求Sn,并判断Sn+1SnSn+2是否成等差数列

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】把函数f(x)=sin(2x+φ)(|φ|< )的图象上的所有点向左平移 个单位长度,得到函数y=g(x)的图象,且g(﹣x)=g(x),则(
A.y=g(x)在(0, )单调递增,其图象关于直线x= 对称
B.y=g(x)在(0, )单调递增,其图象关于直线x= 对称
C.y=g(x)在(0, )单调递减,其图象关于直线x= 对称
D.y=g(x)在(0, )单调递减,其图象关于直线x= 对称

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知在四棱锥P﹣ABCD中,底面ABCD是平行四边形,PA⊥平面ABCD,PA= ,AB=1.AD=2.∠BAD=120°,E,F,G,H分别是BC,PB,PC,AD的中点.
(Ⅰ)求证:PH∥平面GED;
(Ⅱ)过点F作平面α,使ED∥平面α,当平面α⊥平面EDG时,设PA与平面α交于点Q,求PQ的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】集合A={x|1≤x≤5},B={x|2≤x≤6},
(1)若x∈A,y∈B且均为整数,求x>y的概率.
(2)若x∈A,y∈B且均为实数,求x>y的概率.

查看答案和解析>>

同步练习册答案