精英家教网 > 高中数学 > 题目详情
某服装厂从今年1月份开始制作某品牌运动装,且前4个月的产量分别为1万套,1.2万套,1.3万套,1.37万套,由于产品质量好,款式新颖,前几个月的产品销售情况良好,为在推销产品时接受订单不至于过多或过少,需要估测以后几个月的产量,行家分析,产量的增加是由于工人生产熟练和理顺了生产流程,因此厂里暂不准备增加设备和工人,假设你是厂长,你将会采用什么方法估算以后几个月的产量?
考点:函数模型的选择与应用
专题:计算题,应用题,作图题,函数的性质及应用
分析:由题意先作出散点图,从而选择函数模型,从而设出参数求出函数模型即可.
解答: 解:由题意作出散点图,

分析可知,产量随着月份增加而增加,
但增长速度越来越慢,
故可采用对数函数模型来估算以后几个月的产量;
不妨设y=alnx+b;
则可得,
aln1+b=1
aln4+b=1.37

解得,a=0.267,b=1,
故用y=0.267lnx+1来估算以后几个月的产量.
点评:本题考查了函数在实际问题中的应用,注意作图选择函数模型,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知☉C的方程为(x-1)2+(y-1)2=1,直线l:4x+3y+c=0(c<-2)与x、y轴分别相交于A、B两点,点P(x,y)(xy>0)是线段AB上的动点,如果直线l与圆C相切,则log3x+log3y的最大值为(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

设a>0,b>0,若a+3b=1,则
1
a
+
3
b
的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A(-1,2),
AB
=(2,3),
CB
=(1,-3),则C的坐标为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若不等于1的三个正数a、b、c成等比数列,则(2-logba)(1+logca)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

|cosθ|
cosθ
+
sinθ
|sinθ|
=0
,试判断sin(cosθ)•cos(sinθ)的符号.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线y=2与函数f(x)=3sin(ωx+Φ)(ω>0,|Φ|<
π
2
)的图象在y轴右侧的交点依次为A,B,C,…,A,C两点在x轴上的射影是A1C1,若矩形ACC1A1的面积为4,且f(2013)=-
3
3
2
,则f(x)的单调区间
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆中心在原点,一个焦点为(-2,0),且长轴长是短轴长的2倍,则该椭圆的标准方程是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
a
x2
+lnx,g(x)=x3-x2-3.
(Ⅰ)讨论函数f(x)的单调性;
(Ⅱ)若存在x1x2∈[-
1
3
,3]
,使得g(x1)-g(x2)≥M成立,求满足条件的最大整数M;
(Ⅲ)如果对任意的s,t∈[
1
3
,2]
,都有sf(s)≥g(t)成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案