精英家教网 > 高中数学 > 题目详情
14.设直线f(x)是定义在R上的奇函数,且对任意x∈R都有f(x)=f(x+5),且当x∈(0,$\frac{5}{2}$)时,f(x)=2x,则f(2014)+f(2015)=-2.

分析 函数f(x)是定义在R上的奇函数,可得f(0)=0;对任意x∈R都有f(x)=f(x+5),可得函数的周期为5,由此可得结论.

解答 解:由题意,函数f(x)是定义在R上的奇函数,∴f(0)=0
∵对任意x∈R都有f(x)=f(x+5),∴函数的周期为5,∴f(2015)=f(5×403)=f(0)=0
∵当x∈(0,$\frac{5}{2}$)时,f(x)=2x,∴f(1)=2
∴f(2014)=f(5×403-1)=f(-1)=-f(1)=-2
∴f(2014)+f(2015)=-2.
故答案为:-2.

点评 本题考查函数的奇偶性与周期性,考查学生的计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.在△ABC中,顶点A的坐标为(3,1),边BC中点D的坐标为(-3,1),则△ABC重心坐标为(-1,1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设偶函数f(x)对任意x∈R都有f(x+2)=-f(x),且当x∈[0,1]时,f(x)=x,则f(2015)=(  )
A.-2B.-1C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.命题“p:?x∈R,2x≤a”是假命题,则实数a的取值范围是(-∞,0].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设函数f(x)=$\left\{\begin{array}{l}{\frac{1}{x},x>1}\\{-x-2,x≤1}\end{array}\right.$,则函数f(x)的值域是(0,1)∪[-3,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.对于三次函数f(x)=ax3+bx2+cx+d(a≠0),定义:设f″(x)是函数y=f′(x)的导数,若方程f″(x)=0有实数解x0,则称点(x0,f(x0))为函数y=f(x)的“拐点”.有同学发现:“任何一个三次函数都有‘拐点’;任何一个三次函数都有对称中心;且‘拐点’就是对称中心.”请你将这一发现作为条件.
(Ⅰ)函数g(x)=$\frac{1}{3}{x^3}-\frac{1}{2}{x^2}+3x-\frac{5}{12}$的对称中心为($\frac{1}{2}$,1);
(Ⅱ)若函数g(x)=$\frac{1}{3}{x^3}-\frac{1}{2}{x^2}+3x-\frac{5}{12}+\frac{1}{2x-1}$,则$g(\frac{1}{2015})+g(\frac{2}{2015})+g(\frac{3}{2015})+…+g(\frac{2014}{2015})$=2014.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.关于x的不等式x2-(a+a2)x+a3<0(a>0)的解集为(x1,x2),且x2-x1=12,则a=(  )
A.4B.3C.3或4D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知定义在R上函数f(x)的值域是(-∞,0],并且函数f(x)单调,则方程f3(x)-3f(x)-1=0的解的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.解不等式:|$\frac{x-1}{2x-3}$-1|<2.

查看答案和解析>>

同步练习册答案