精英家教网 > 高中数学 > 题目详情
6.已知cosα=$\frac{\sqrt{5}}{5}$且tanα>0.
(1)求tanα的值;
(2)求$\frac{cosα+2sin(π-α)}{sin(\frac{π}{2}-α)-sinα}$的值.

分析 (1)由已知先利用同角三角函数关系式求出sinα,再求出tanα的值.
(2)利用诱导公式求解.

解答 解:(1)∵cosα=$\frac{\sqrt{5}}{5}$且tanα>0,
∴sinα=$\sqrt{1-(\frac{\sqrt{5}}{5})^{2}}$=$\frac{2\sqrt{5}}{5}$,
∴tanα=$\frac{sinα}{cosα}$=$\frac{\frac{2\sqrt{5}}{5}}{\frac{\sqrt{5}}{5}}$=2.
(2)∵cosα=$\frac{\sqrt{5}}{5}$,sin$α=\frac{2\sqrt{5}}{5}$,
∴$\frac{cosα+2sin(π-α)}{sin(\frac{π}{2}-α)-sinα}$=$\frac{cosα+2sinα}{cosα-sinα}$=$\frac{\frac{\sqrt{5}}{5}+2×\frac{2\sqrt{5}}{5}}{\frac{\sqrt{5}}{5}-\frac{2\sqrt{5}}{5}}$=-5.

点评 本题考查三角函数值的求法,是基础题,解题时要认真审题,注意诱导公式和同角三角函数关系式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.不等式(1+x)(1+|x|)<0的解集是{x|x<-1}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.某校共有教师200人,男学生800人,女学生600人,现用分层抽样的方法从所有师生中抽取一个容量为n的样本,已知从男学生中抽取的人数为100人,那么n=200.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知等比数列{an}的前n项和为Sn,则下列一定成立的是(  )
A.若a4>0,则a2016<0B.若a5>0,则a2015<0
C.若a4>0,则S2016>0D.若a5>0,则S2015>0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知cosα-sinβ=$\frac{1}{2}$,sinα-sinβ=-$\frac{1}{3}$,求sin(α+β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设实数x>1,则$\frac{{x}^{2}-2x+2}{2x-2}$的最小值为(  )
A.2B.3C.1D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若不等式x2-2(m+2)x+m2-1≥0的解集为R,则实数m的取值范围为(-∞,-$\frac{5}{4}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.求下列函数的值域:
(1)y=$\sqrt{1-2x}$-x;
(2)y=$\frac{5}{2{x}^{2}-4x+3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,正方体ABCD-A1B1C1D1的棱长为2,P是BC的中点,点Q是棱CC1上的动点.
(1)点Q在何位置时,直线D1Q,DC,AP交于一点,并说明理由;
(2)求三棱锥B1-DBQ的体积;
(3)若点Q是棱CC1的中点时,记过点A,P,Q三点的平面截正方体所得截面为S,求截面S的面积.

查看答案和解析>>

同步练习册答案