精英家教网 > 高中数学 > 题目详情

某工厂师徒二人各加工相同型号的零件,是否加工出精品均互不影响.已知师傅加工一个零件是精品的概率为数学公式,师徒二人各加工2个零件都是精品的概率为数学公式
(1)求徒弟加工2个零件都是精品的概率;
(2)若师徒二人各加工这种型号的零件2个,求徒弟加工该零件的精品数多于师傅的概率.

解:(1)设徒弟加工1个零件是精品的概率为p1,则,∴
∴徒弟加工2个零件都是精品的概率是
(2)设徒弟加工零件的精品数多于师父的概率为p2,由(1)知
师父加工两个零件中精品个数为0个,1个的概率分别为
徒弟加工两个零件中,精品个数为1个,2个的概率分别为
所以p2=
分析:(1)设出徒弟加工1个零件是精品的概率,由相互独立事件同时发生的概率得到关于概率的方程,解方程即可;
(2)写出两个人加工零件对应的是精品的概率,徒弟加工该零件的精品数多于师父包括三种情况,这三种情况是互斥的,根据相互独立事件同时发生的概率和互斥事件的概率得到结果.
点评:本题考查相互独立事件的概率,考查互斥事件的概率,正确计算是关键,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某工厂师徒二人各加工相同型号的零件2个,是否加工出精品均互不影响.已知师父加工一个零件是精品的概率为
2
3
,师徒二人各加工2个零件都是精品的概率为
1
9

(Ⅰ)求徒弟加工2个零件都是精品的概率;
(Ⅱ)求徒弟加工该零件的精品数多于师父的概率;
(Ⅲ)设师徒二人加工出的4个零件中精品个数为ξ,求ξ的分布列与均值Eξ.

查看答案和解析>>

科目:高中数学 来源: 题型:

某工厂师徒二人各加工相同型号的零件2个,是否加工出精品均互不影响.已知师父加工一个零件是精品的概率为
2
3
,师徒二人各加工2个零件都是精品的概率为
1
9

(Ⅰ)求徒弟加工该零件的精品数多于师父的概率;
(Ⅱ)设师徒二人加工出的4个零件中精品个数为ξ,求ξ的分布列与期望Eξ.

查看答案和解析>>

科目:高中数学 来源: 题型:

某工厂师徒二人各加工相同型号的零件,是否加工出精品均互不影响.已知师傅加工一个零件是精品的概率为
2
3
,师徒二人各加工2个零件都是精品的概率为
1
9
. 
 (1)求徒弟加工2个零件都是精品的概率;
(2)若师徒二人各加工这种型号的零件2个,求徒弟加工该零件的精品数多于师傅的概率.

查看答案和解析>>

科目:高中数学 来源:2010年河北省正定中学高三下学期第三次模拟考试数学(理) 题型:解答题

某工厂师徒二人各加工相同型号的零件2个,是否加工出精品均互不影响.已知师父加工一个零件是精品的概率为,师徒二人各加工2个零件都是精品的概率为
(I)求徒弟加工2个零件都是精品的概率;
(II)求徒弟加工该零件的精品数多于师父的概率;
(III)设师徒二人加工出的4个零件中精品个数为,求的分布列与均值E.

查看答案和解析>>

科目:高中数学 来源:河北省2010年高考适应性测试数学试卷理 题型:解答题

某工厂师徒二人各加工相同型号的零件2个,是否加工出精品均互不影响.已知师父加工一个零件是精品的概率为,师徒二人各加工2个零件都是精品的概率为(I)求徒弟加工2个零件都是精品的概率;

(II)求徒弟加工该零件的精品数多于师父的概率;

(III)设师徒二人加工出的4个零件中精品个数为,求的分布列与均值E

 

查看答案和解析>>

同步练习册答案