精英家教网 > 高中数学 > 题目详情
20.已知数列{an}的前n项Sn=(-1)n•$\frac{1}{n}$,若存在正整数n,使得(an-1-p)•(an-p)<0成立,则实数p的取值范围是$(-1,\frac{3}{2})$.

分析 Sn=(-1)n•$\frac{1}{n}$,可得:当n=1时,a1=-1;当n≥2时,an=Sn-Sn-1.若存在正整数n,使得(an-1-p)•(an-p)<0成立,当n=2时,(a1-p)(a2-p)<0,解得p范围.当n≥3时,$[(-1)^{n-1}•\frac{2n-3}{{n}^{2}-3n+2}-p]$$[(-1)^{n}\frac{2n-1}{{n}^{2}-n}-p]$<0,对n分类讨论即可得出.

解答 解:∵Sn=(-1)n•$\frac{1}{n}$,
∴当n=1时,a1=-1;当n≥2时,an=Sn-Sn-1=(-1)n•$\frac{1}{n}$-(-1)n-1$•\frac{1}{n-1}$=$(-1)^{n}•\frac{2n-1}{{n}^{2}-n}$,
若存在正整数n,使得(an-1-p)•(an-p)<0成立,
当n=2时,(a1-p)(a2-p)=(-1-p)$(\frac{3}{2}-p)$<0,解得$-1<p<\frac{3}{2}$.
当n≥3时,$[(-1)^{n-1}•\frac{2n-3}{{n}^{2}-3n+2}-p]$$[(-1)^{n}\frac{2n-1}{{n}^{2}-n}-p]$<0,
当n=2k时,$(p+\frac{2n-3}{{n}^{2}-3n+2})$$(p-\frac{2n-1}{{n}^{2}-n})$<0,
∵$\frac{2n-3}{(n-1)(n-2)}$-$\frac{2n-1}{n(n-1)}$=$\frac{2}{n(n-2)}$>0.
∴-$\frac{2n-3}{{n}^{2}-3n+2}$<p<$\frac{2n-1}{{n}^{2}-n}$.
可得:-$\frac{5}{6}$<p<$\frac{7}{12}$.
当n=2k-1时,$(p-\frac{2n-3}{{n}^{2}-3n+2})$$(p+\frac{2n-1}{{n}^{2}-n})$<0,
-$\frac{2n-1}{{n}^{2}-n}$<p<$\frac{2n-3}{{n}^{2}-3n+2}$,
∴-$\frac{5}{6}$<p<$\frac{3}{2}$.
综上可得:实数p的取值范围是-1<p<$\frac{3}{2}$..
故答案为:$(-1,\frac{3}{2})$.

点评 本题考查了递推关系、不等式的解法、分类讨论方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.设二次函数f(x)=ax2+bx+1(a,b∈R,a>0),方程f(x)=x的两个实数根为x1,x2,若0<x1<2,|x2-x1|=2,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.求函数y=$\frac{{x}^{4}+4{x}^{3}+17{x}^{2}+26x+106}{{x}^{2}+2x+7}$的最大值与最小值,其中|x|≤1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=$\frac{1}{\root{3}{{x}^{2}+2x+1}+\root{3}{{x}^{2}-1}+\root{3}{{x}^{2}-2x+1}}$,求f(1)+f(3)+f(5)+…+f(2k-1)+…+f(999)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.求下列余弦值:cos2013π=-1;cos(-$\frac{13π}{6}$)=$\frac{\sqrt{3}}{2}$;cos780°=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.下列说法不正确的有①②③④. 
①若$\overrightarrow{a}$∥$\overrightarrow{b}$,则$\overrightarrow{a}$与$\overrightarrow{b}$的方向相同或 相反;
②若λ$\overrightarrow{a}$=$\overrightarrow{0}$,则λ=0;
③相反向量必不相等;
④若$\overrightarrow{a}$=$\overrightarrow{{e}_{1}}$+λ$\overrightarrow{{e}_{2}}$,$\overrightarrow{b}$=2$\overrightarrow{{e}_{1}}$,λ∈R且 λ≠0,则$\overrightarrow{a}$∥$\overrightarrow{b}$的充要条件是$\overrightarrow{{e}_{2}}$=$\overrightarrow{0}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=$\frac{{p{x^2}+1}}{x+q}$是奇函数,且f(2)=$\frac{5}{2}$.
(1)求实数p,q的值;
(2)判断f(x)在[1,+∞)上的单调性,并证明你的结论;
(3)若对任意的t≥1,试比较f(t2-t+1)与f(2t2-t)的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知向量$\overrightarrow a=(3,1),\overrightarrow b=(1,3),\overrightarrow c=(k,2)$,若$(\overrightarrow a-\overrightarrow c)∥\overrightarrow b$,则k=$\frac{10}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知⊙O的圆心为原点,与直线3x+4y-15=0相切,⊙M的方程为(x-3)2+(y-4)2=1,过⊙M上任一点P作⊙O的切线PA,切点为A,若直线PA与⊙M的另一交点为Q,当弦PQ最大时,则PA的直线方程为x=3或7x-24y+75=0.

查看答案和解析>>

同步练习册答案